No CrossRef data available.
Article contents
Meta-learning in active inference
Published online by Cambridge University Press: 23 September 2024
Abstract
Binz et al. propose meta-learning as a promising avenue for modelling human cognition. They provide an in-depth reflection on the advantages of meta-learning over other computational models of cognition, including a sound discussion on how their proposal can accommodate neuroscientific insights. We argue that active inference presents similar computational advantages while offering greater mechanistic explanatory power and biological plausibility.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © The Author(s), 2024. Published by Cambridge University Press
References
Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron, 76(4), 695–711. https://doi.org/10.1016/j.neuron.2012.10.038CrossRefGoogle ScholarPubMed
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204. https://doi.org/10.1017/S0140525X12000477CrossRefGoogle ScholarPubMed
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. https://doi.org/10.1038/nrn2787CrossRefGoogle ScholarPubMed
Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2016). Active inference and learning. Neuroscience & Biobehavioral Reviews, 68, 862–879. https://doi.org/10.1016/j.neubiorev.2016.06.022CrossRefGoogle ScholarPubMed
Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2017). Active inference: A process theory. Neural Computation, 29(1), 1–49. https://doi.org/10.1162/NECO_a_00912CrossRefGoogle ScholarPubMed
Kaplan, R., & Friston, K. J. (2018). Planning and navigation as active inference. Biological Cybernetics, 112(4), 323–343. https://doi.org/10.1007/s00422-018-0753-2CrossRefGoogle ScholarPubMed
Kriegeskorte, N., & Douglas, P. K. (2018). Cognitive computational neuroscience. Nature Neuroscience, 21(9), 1148–1160. https://doi.org/10.1038/s41593-018-0210-5CrossRefGoogle ScholarPubMed
Pezzulo, G., Parr, T., & Friston, K. (2024). Active inference as a theory of sentient behavior. Biological Psychology, 186, 108741. https://doi.org/10.1016/j.biopsycho.2023.108741CrossRefGoogle ScholarPubMed
Pezzulo, G., Rigoli, F., & Friston, K. J. (2018). Hierarchical active inference: A theory of motivated control. Trends in Cognitive Sciences, 22(4), 294–306. https://doi.org/10.1016/j.tics.2018.01.009CrossRefGoogle ScholarPubMed
Schwartenbeck, P., FitzGerald, T. H., Mathys, C., Dolan, R., & Friston, K. (2015). The dopaminergic midbrain encodes the expected certainty about desired outcomes. Cerebral Cortex, 25(10), 3434–3445. https://doi.org/10.1093/cercor/bhu159CrossRefGoogle ScholarPubMed
Schwartenbeck, P., Passecker, J., Hauser, T. U., FitzGerald, T. H. B., Kronbichler, M., & Friston, K. J. (2019). Computational mechanisms of curiosity and goal-directed exploration. eLife, 8, e41703. https://doi.org/10.7554/eLife.41703CrossRefGoogle ScholarPubMed
Smith, R., Badcock, P., & Friston, K. J. (2021). Recent advances in the application of predictive coding and active inference models within clinical neuroscience. Psychiatry and Clinical Neurosciences, 75(1), 3–13. https://doi.org/10.1111/pcn.13138CrossRefGoogle ScholarPubMed
Whyte, C. J., & Smith, R. (2021). The predictive global neuronal workspace: A formal active inference model of visual consciousness. Progress in Neurobiology, 199, 101918. https://doi.org/10.1016/j.pneurobio.2020.101918CrossRefGoogle ScholarPubMed
Zador, A., Escola, S., Richards, B., Ölveczky, B., Bengio, Y., Boahen, K., Tsao, D. (2023). Catalyzing next-generation Artificial Intelligence through NeuroAI. Nature Communications, 14(1), 1597. https://doi.org/10.1038/s41467-023-37180-xCrossRefGoogle ScholarPubMed
Target article
Meta-learned models of cognition
Related commentaries (22)
Bayes beyond the predictive distribution
Challenges of meta-learning and rational analysis in large worlds
Combining meta-learned models with process models of cognition
Integrative learning in the lens of meta-learned models of cognition: Impacts on animal and human learning outcomes
Is human compositionality meta-learned?
Learning and memory are inextricable
Linking meta-learning to meta-structure
Meta-learned models as tools to test theories of cognitive development
Meta-learned models beyond and beneath the cognitive
Meta-learning and the evolution of cognition
Meta-learning as a bridge between neural networks and symbolic Bayesian models
Meta-learning goes hand-in-hand with metacognition
Meta-learning in active inference
Meta-learning modeling and the role of affective-homeostatic states in human cognition
Meta-learning: Bayesian or quantum?
Probabilistic programming versus meta-learning as models of cognition
Quantum Markov blankets for meta-learned classical inferential paradoxes with suboptimal free energy
Quo vadis, planning?
The added value of affective processes for models of human cognition and learning
The hard problem of meta-learning is what-to-learn
The meta-learning toolkit needs stronger constraints
The reinforcement metalearner as a biologically plausible meta-learning framework
Author response
Meta-learning: Data, architecture, and both