Hostname: page-component-f554764f5-wjqwx Total loading time: 0 Render date: 2025-04-20T20:42:34.063Z Has data issue: false hasContentIssue false

Meta-learning as a bridge between neural networks and symbolic Bayesian models

Published online by Cambridge University Press:  23 September 2024

R. Thomas McCoy
Affiliation:
Department of Linguistics, Yale University, New Haven, CT, USA [email protected] https://rtmccoy.com/
Thomas L. Griffiths*
Affiliation:
Departments of Psychology and Computer Science, Princeton University, Princeton, NJ, USA [email protected] http://cocosci.princeton.edu/tom/
*
*Corresponding author.

Abstract

Meta-learning is even more broadly relevant to the study of inductive biases than Binz et al. suggest: Its implications go beyond the extensions to rational analysis that they discuss. One noteworthy example is that meta-learning can act as a bridge between the vector representations of neural networks and the symbolic hypothesis spaces used in many Bayesian models.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anderson, J. R. (1990). The adaptive character of thought. Psychology Press.Google Scholar
Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep networks. In International Conference on Machine Learning, 11261135.Google Scholar
Goodman, N. D., Tenenbaum, J. B., Feldman, J., & Griffiths, T. L. (2008). A rational analysis of rule-based concept learning. Cognitive Science, 32(1), 108154.CrossRefGoogle ScholarPubMed
Grant, E., Finn, C., Levine, S., Darrell, T., & Griffiths, T. (2018). Recasting gradient-based meta-learning as hierarchical Bayes. International Conference on Learning Representations.Google Scholar
Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. B. (2010). Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences, 14(8), 357364.CrossRefGoogle ScholarPubMed
Hinton, G. E., McClelland, J. L., & Rumelhart, D. E. (1986). Distributed representations. In Rumelhart, D. E. & McClelland, J. L. (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition, vol. 1. Foundations, pp. 77109.Google Scholar
Lake, B. M. (2019). Compositional generalization through meta sequence-to-sequence learning. Advances in Neural Information Processing Systems, 32.Google Scholar
Lake, B. M., & Baroni, M. (2023). Human-like systematic generalization through a meta-learning neural network. Nature, 623(7985), 115121.CrossRefGoogle ScholarPubMed
Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. W.H. Freeman.Google Scholar
McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T. T., Seidenberg, M. S., & Smith, L. B. (2010). Letting structure emerge: Connectionist and dynamical systems approaches to cognition. Trends in Cognitive Sciences, 14(8), 348356.CrossRefGoogle ScholarPubMed
McCoy, R. T., Grant, E., Smolensky, P., Griffiths, T. L., & Linzen, T. (2020). Universal linguistic inductive biases via meta-learning. Proceedings of the 42nd Annual Conference of the Cognitive Science Society, 737743.Google Scholar
McCoy, R. T., & Griffiths, T. L. (2023). Modeling rapid language learning by distilling Bayesian priors into artificial neural networks. arXiv preprint arXiv:2305.14701.Google Scholar
Mitchell, T. M. (1997). Machine learning. McGraw Hill.Google Scholar
Yang, Y., & Piantadosi, S. T. (2022). One model for the learning of language. Proceedings of the National Academy of Sciences, 119(5), e2021865119.CrossRefGoogle ScholarPubMed