Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T01:32:10.989Z Has data issue: false hasContentIssue false

Local resource depletion hypothesis as a mechanism for action selection in the brain

Published online by Cambridge University Press:  04 December 2013

Aneta Brzezicka
Affiliation:
Interdisciplinary Center for Applied Cognitive Studies, University of Social Sciences and Humanities, 03-815 Warsaw, Poland. [email protected]://www.icacs.swps.edu.pl
Jan Kamiński
Affiliation:
Department of Neurophysiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland. j.kamiń[email protected]@nencki.gov.pl
Andrzej Wróbel
Affiliation:
Department of Neurophysiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland. j.kamiń[email protected]@nencki.gov.pl

Abstract

As a comment on Kurzban et al.'s opportunity cost model, we propose an alternative view of mental effort and the action selection mechanism in the brain. Our hypothesis utilizes local resource depletion within neuronal networks, which justifies from a neurophysiological perspective why mental fatigue diminishes after switching to a novel task and explains action selection by means of neural competition theory.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrouillet, P., Gavens, N., Vergauwe, E., Gaillard, V. & Camos, V. (2009) Working memory span development: A time-based resource-sharing model account. Developmental Psychology 45(2):477.Google Scholar
Bullmore, E. & Sporns, O. (2012) The economy of brain network organization. Nature Reviews Neuroscience 13(5):336–49.CrossRefGoogle ScholarPubMed
Cisek, P. (2007) Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of the Royal Society, B: Biological Sciences 362:1585–99.CrossRefGoogle ScholarPubMed
Denker, A. & Rizzoli, S. O. (2010) Synaptic vesicle pools: An update. Frontiers in Synaptic Neuroscience 2:135. doi: 10.3389/fnsyn.2010.0013.Google Scholar
Hasselmo, M. E. (2006) The role of acetylcholine in learning and memory. Current Opinion in Neurobiology 16:710–15.CrossRefGoogle ScholarPubMed
Hasselmo, M. E. & Stern, C. E. (2006) Mechanisms underlying working memory for novel information. Trends in Cognitive Sciences 10(11):487–93.Google Scholar
Jensen, O. & Lisman, J. E. (1998) An oscillatory short-term memory buffer model can account for data on the Sternberg task. The Journal of Neuroscience 18(24):10688–99.Google Scholar
Kamiński, J., Brzezicka, A. & Wróbel, A. (2011) Short term memory capacity (7+/−2) predicted by theta to gamma cycle length ratio. Neurobiology of Learning and Memory 95:1923.Google Scholar
Krueger, J. M., Rector, D. M., Roy, S., Van Dongen, H. P., Belenky, G. & Panksepp, J. (2008) Sleep as a fundamental property of neuronal assemblies. Nature Reviews Neuroscience 9(12):910–19.CrossRefGoogle ScholarPubMed
Lisman, J. E. & Idiart, M. (1995) Storage of 7+/-2 short-term memories in oscillatory subcycles. Science 267:10.Google Scholar
Logie, R. H. (2011) The functional organization and capacity limits of working memory. Current Directions in Psychological Science 20(4):240–45.CrossRefGoogle Scholar
Pastoll, H., Solanka, L., van Rossum, M. C. & Nolan, M. F. (2013) Feedback inhibition enables theta-nested gamma oscillations and grid firing fields. Neuron 77(1):141–54.Google Scholar
Sarter, M. & Parikh, V. (2005) Choline transporters, cholinergic transmission and cognition. Nature Reviews Neuroscience 6(1):4856.CrossRefGoogle ScholarPubMed
Vyazovskiy, V. V., Olcese, U., Hanlon, E. C., Nir, Y., Cirelli, C. & Tononi, G. (2011) Local sleep in awake rats. Nature 472(7344):443–47.Google Scholar
Zucker, R. S. & Regehr, W. G. (2002) Short-term synaptic plasticity. Annual Review of Physiology 64:355405.Google Scholar