Hostname: page-component-f554764f5-8cg97 Total loading time: 0 Render date: 2025-04-22T08:26:54.421Z Has data issue: false hasContentIssue false

Bayes beyond the predictive distribution

Published online by Cambridge University Press:  23 September 2024

Anna Székely*
Affiliation:
Department of Computational Sciences, HUN-REN Wigner Research Centre for Physics, Budapest, Hungary [email protected] [email protected] http://golab.wigner.mta.hu/people/anna-szekely/ http://golab.wigner.mta.hu/people/gergo-orban/ Department of Cognitive Science, Faculty of Natural Sciences, Budapest University of Technology and Economics, Budapest, Hungary
Gergő Orbán
Affiliation:
Department of Computational Sciences, HUN-REN Wigner Research Centre for Physics, Budapest, Hungary [email protected] [email protected] http://golab.wigner.mta.hu/people/anna-szekely/ http://golab.wigner.mta.hu/people/gergo-orban/
*
*Corresponding author.

Abstract

Binz et al. argue that meta-learned models offer a new paradigm to study human cognition. Meta-learned models are proposed as alternatives to Bayesian models based on their capability to learn identical posterior predictive distributions. In our commentary, we highlight several arguments that reach beyond a predictive distribution-based comparison, offering new perspectives to evaluate the advantages of these modeling paradigms.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Achille, A., Eccles, T., Matthey, L., Burgess, C. P., Watters, N., Lerchner, A., & Higgins, I. (2018). Life-long disentangled representation learning with cross-domain latent homologies. NeurIPS.Google Scholar
Csikor, F., Meszéna, B., & Orbán, G. (2023). Top-down perceptual inference shaping the activity of early visual cortex. BioRxiv. https://doi.org/10.1101/2023.11.29.569262Google Scholar
Éltető, N., Nemeth, D., Janacsek, K., & Dayan, P. (2022). Tracking human skill learning with a hierarchical Bayesian sequence model. PLoS Computational Biology, 18(11), e1009866. https://doi.org/10.1371/journal.pcbi.1009866CrossRefGoogle ScholarPubMed
Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. B. (2010). Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences, 14(8), 357364. https://doi.org/10.1016/j.tics.2010.05.004CrossRefGoogle ScholarPubMed
Heald, J. B., Lengyel, M., & Wolpert, D. M. (2021). Contextual inference underlies the learning of sensorimotor repertoires. Nature, 600, 489493. https://doi.org/10.1038/s41586-021-04129-3CrossRefGoogle ScholarPubMed
Kemp, C., Perfors, A., & Tenenbaum, J. B. (2007). Learning overhypotheses with hierarchical Bayesian models. Developmental Science, 10(3), 307321. https://doi.org/10.1111/j.1467-7687.2007.00585.xCrossRefGoogle ScholarPubMed
Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form. PNAS, 105(31), 1068710692. https://doi.org/10.1073/pnas.0802631105CrossRefGoogle ScholarPubMed
Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350(6266), 13321338. Retrieved from www.sciencemag.orgCrossRefGoogle ScholarPubMed
Nagy, D. G., Török, B., & Orbán, G. (2020). Optimal forgetting: Semantic compression of episodic memories. PLoS Computational Biology, 16(10), e1008367. https://doi.org/10.1371/journal.pcbi.1008367CrossRefGoogle ScholarPubMed
Rao, D., Visin, F., Rusu, A. A., Teh, Y. W., Pascanu, R., & Hadsell, R. (2019). Continual unsupervised representation learning. NeurIPS.Google Scholar
Spens, E., & Burgess, N. (2024). A generative model of memory construction and consolidation. Nature Human Behaviour, 8, 526543. https://doi.org/10.1038/s41562-023-01799-zCrossRefGoogle ScholarPubMed
Székely, A., Török, B., Kiss, M. M., Janacsek, K., Németh, D., & Orbán, G. (2024). Identifying transfer learning in the reshaping of inductive biases. PsyArxiv.Google ScholarPubMed
Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based Bayesian models of inductive learning and reasoning. Trends in Cognitive Sciences, 10(7), 309318. https://doi.org/10.1016/j.tics.2006.05.009CrossRefGoogle ScholarPubMed
Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022), 12791285. https://doi.org/10.1126/science.1192788CrossRefGoogle Scholar
Török, B., Nagy, D. G., Kiss, M., Janacsek, K., Németh, D., & Orbán, G. (2022). Tracking the contribution of inductive bias to individualised internal models. PLoS Computational Biology, 18(6), e1010182. https://doi.org/10.1371/journal.pcbi.1010182CrossRefGoogle ScholarPubMed