Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T07:04:09.943Z Has data issue: false hasContentIssue false

What fixations reveal about oculomotor scanning behavior in visual search

Published online by Cambridge University Press:  24 May 2017

Zhuanghua Shi
Affiliation:
General and Experimental Psychology, Department of Psychology, LMU Munich, 80802 Munich, Germany. [email protected]@psy.lmu.de
Xuelian Zang
Affiliation:
General and Experimental Psychology, Department of Psychology, LMU Munich, 80802 Munich, Germany. [email protected]@psy.lmu.de China Centre for Special Economic Zone Research, Shenzhen University, Guangdong Sheng 518060, China. [email protected]
Thomas Geyer
Affiliation:
General and Experimental Psychology, Department of Psychology, LMU Munich, 80802 Munich, Germany. [email protected]@psy.lmu.de

Abstract

Hulleman & Olivers' (H&O's) conceptual framework does not consider variation of fixation duration and its interaction with the size of the functional viewing field (FVF). Here we provide empirical evidence of a dynamic interaction between the two parameters, suggesting that fixations, as the central unit in H&O's framework, should be studied on both the spatial and temporal dimensions.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Findlay, J. M. & Walker, R. (1999) A model of saccade generation based on parallel processing and competitive inhibition. Behavioral and Brain Sciences 22(04):661–74.CrossRefGoogle Scholar
Geyer, T., Von Mühlenen, A. & Müller, H. J. (2007) What do eye movements reveal about the role of memory in visual search? Quarterly Journal of Experimental Psychology 60(7):924–35.CrossRefGoogle ScholarPubMed
Hooge, I. T. C. & Erkelens, C. J. (1998) Adjustment of fixation duration in visual search. Vision Research 38(9):1295–302. doi: 10.1016/S0042-6989(97)00287-3.Google Scholar
Moffitt, K. (1980) Evaluation of the fixation duration in visual search. Perception and Psychophysics 27(4):370–72. doi: 10.3758/BF03206127.Google Scholar
Nuthmann, A., Smith, T. J., Engbert, R. & Henderson, J. M. (2010) CRISP: A computational model of fixation durations in scene viewing. Psychological Review 117(2):382405. doi: 10.1037/a0018924.Google Scholar
Pomplun, M., Garaas, T. W. & Carrasco, M. (2013) The effects of task difficulty on visual search strategy in virtual 3D displays. Journal of Vision 13(2013):122. doi: 10.1167/13.3.24.doi.Google Scholar
Unema, P. J. a., Pannasch, S., Joos, M. & Velichkovsky, B. M. (2005) Time course of information processing during scene perception: The relationship between saccade amplitude and fixation duration. Visual Cognition 12(3):473–94. doi: 10.1080/13506280444000409.Google Scholar
van Asselen, M., Sampaio, J., Pina, A. & Castelo-Branco, M. (2011) Object based implicit contextual learning: A study of eye movements. Attention, Perception, and Psychophysics 73(2):297302. doi: 10.3758/s13414-010-0047-9.Google Scholar
Zang, X., Jia, L., Müller, H. J. & Shi, Z. (2015) Invariant spatial context is learned but not retrieved in gaze-contingent limited-viewing search. Journal of Experimental Psychology: Learning, Memory, and Cognition 41(3):807–19. doi: 10.1037/xlm0000060.Google Scholar
Zou, H., Müller, H. J. & Shi, Z. (2012) Non-spatial sounds regulate eye movements and enhance visual search. Journal of Vision 12(5):2, 118. doi: 10.1167/12.5.2.Google Scholar