Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T19:37:01.687Z Has data issue: false hasContentIssue false

Incorporating coordination dynamics into an evolutionarily grounded science of intentional change

Published online by Cambridge University Press:  27 August 2014

Viviane Kostrubiec
Affiliation:
PRISSMH EA EA 4561, University of Toulouse, 31062 Toulouse Cedex 9, [email protected]
J. A. Scott Kelso
Affiliation:
Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33421. [email protected] Intelligent Systems Research Centre, University of Ulster, Magee Campus, Derry BT487JL, Northern Ireland.

Abstract

We suggest the authors' endeavor toward a science of intentional change may benefit from recent advances in informationally meaningful self-organizing dynamical systems. Coordination Dynamics, having contributed to an understanding of behavior on several time scales – adaptation, learning, and development – and on different levels of analysis, from the neural to the social, may complement, if not enhance, the authors' insights.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beek, P. J., Peper, C. E. & Stegman, D. F. (1995) Dynamical models of movement coordination. Human Movement Science 14:573608.Google Scholar
Calvin, S., & Jirsa, V.K. (2010) Perspectives on the dynamic nature of coupling in human coordination. In: Nonlinear dynamics of human behaviour, ed. Huys, R. & Jirsa, V. K.. Springer-Verlag.Google Scholar
DeLuca, C., Jantzen, K. J., Comani, S., Bertollo, M. & Kelso, J. A. S. (2010) Striatal activity during intentional switching depends on pattern stability. Journal of Neuroscience 30:3167–74.Google Scholar
Haken, H. (1983) Synergetics: An introduction. Nonequilibrium phase transitions and self-organization in physics, chemistry and biology, 3rd rev. enl. ed. Springer-Verlag.Google Scholar
Haken, H., Kelso, J. A. S. & Bunz, H. (1985) A theoretical model of phase transitions in human hand movements. Biological Cybernetics 51:347–56.Google Scholar
Johnston, T. D. (1981) Contrasting approaches to a theory of learning. Behavioral and Brain Sciences 4:125–73.Google Scholar
Kelso, J. A. S. (1995) Dynamic patterns: The self-organization of brain and behavior. MIT Press.Google Scholar
Kelso, J. A. S. (2000) Principles of dynamic pattern formation and change for a science of human behavior. In: Developmental science and the holistic approach, ed. Bergman, L. R., Cairns, R. B., Nilsson, L.-G. & Nystedt, L., pp. 6383. Erlbaum.Google Scholar
Kelso, J. A. S. (2002) The complementary nature of coordination dynamics: Self-organization and the origins of agency. Journal of Nonlinear Phenomena in Complex Systems 5:364–71.Google Scholar
Kelso, J. A. S. (2009) Coordination dynamics. In: Encyclopedia of complexity and system science, ed. Meyers, R. A., pp. 1537–64. Springer.Google Scholar
Kelso, J. A. S. (2012) Multistability and metastability: Understanding dynamic coordination in the brain. Philosophical Transactions of the Royal Society B: Biological Sciences 367:906–18.Google Scholar
Kelso, J. A. S. & Engstrøm, D. A. (2006) The complementary nature. MIT Press.Google Scholar
Kelso, J. A. S. & Haken, H. (1995) New laws to be expected in the organism: Synergetics of brain and behavior. In: What is life? The next 50 years, ed. Murphy, M. & O'Neill, L., pp. 137–60. Cambridge University Press.CrossRefGoogle Scholar
Kostrubiec, V., Tallet, J. & Zanone, P. G. (2006) How a new behavioral pattern is stabilized with learning determines its persistence and flexibility in memory. Experimental Brain Research 170:238–44.Google Scholar
Kostrubiec, V., Zanone, P. G., Fuchs, A. & Kelso, J. A. S. (2012) Beyond the blank slate: Routes to learning new coordination patterns depend on the intrinsic dynamics of the learner – experimental evidence and theoretical model. Frontiers in Human Neuroscience 6:222.CrossRefGoogle ScholarPubMed
Pattee, H. H. & Raczaszek-Leonardi, J. (2012) Laws, language and life. Springer.Google Scholar
Schöner, G. & Kelso, J. A. S. (1988) Dynamic pattern generation in behavioral and neural systems. Science 239:1513–20.CrossRefGoogle ScholarPubMed
Skinner, B. F. (1984) Selection by consequences. Behavioral and Brain Sciences 7:477510.CrossRefGoogle Scholar
Sporns, O. & Edelman, G. M. (1993) Solving Bernstein's problem: A proposal for the development of coordinated movement by selection. Child Development 64:960–81.CrossRefGoogle ScholarPubMed
Thelen, E. & Smith, L. B. (1994) A dynamic systems approach to the development of cognition and action. MIT Press.Google Scholar
Thelen, E., Kelso, J. A. S. & Fogel, A. (1987) Self organizing systems and infant motor development. Developmental Review 7:3965.Google Scholar
Timberlake, W. (1990) Natural learning in laboratory paradigms. In: Contemporary issues in comparative psychology, ed. Dewsbury, D. A., pp. 3154, Sinauer Associates.Google Scholar
Turvey, M. T. & Carello, C. (2012) On intelligence from first principles: Guidelines for inquiry into the hypothesis of physical intelligence (PI). Ecological Psychology 24:332.Google Scholar
Warren, W. H. (2006) The dynamics of perception and action. Psychological Review 113:358–89.Google Scholar
Zanone, P. G. & Kelso, J. A. S. (1997) The coordination dynamics of learning and transfer: Collective and component levels. Journal of Experimental Psychology: Human Perception and Performance 23(5):1454–80.Google ScholarPubMed
Zanone, P. G. & Kelso, J. A. S. (1992) Evolution of behavioral attractors with learning: Nonequilibrium phase transitions. Journal of Experimental Psychology: Human Perception and Performance 18(2):403–21.Google Scholar