No CrossRef data available.
Article contents
Human evolution of gestural messaging and its critical role in the human development of music
Published online by Cambridge University Press: 30 September 2021
Abstract
By fostering bonding (Mehr et al.; Savage et al.), music illustrates marvelously its ability to induce emotional experience. But, music can induce emotion more generally as well. To help explain how music fosters bonding and induces other emotions, I propose that music derives this power from the evolution of what I term “gestural messaging.”
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © The Author(s), 2021. Published by Cambridge University Press
References
Carvalho, G. B., & Damasio, A. (2021). Interoception and the origin of feelings: A new synthesis. BioEssays. 10.1002/bies.202000261.10.1002/bies.202000261CrossRefGoogle ScholarPubMed
Damasio, A. (1999). The feeling of what happens: Body and emotion in the making of consciousness. Harcourt.Google Scholar
Damasio, A., & Corvalho, G. B. (2013). The nature of feelings: Evolutionary and neurobiological origins. Nature Reviews: Neuroscience, 14(2), 143–152.10.1038/nrn3403CrossRefGoogle ScholarPubMed
Darwin, C. (1871). The descent of man and selection in relation to sex. In Wilson, E. O. (Ed.), From so simple a beginning: The four great books of Charles Darwin (pp. 767–1252). Norton.Google Scholar
Darwin, C. (1872, 2006). The expression of emotion in man and animals. In Wilson, E. O. (Ed.), From so simple a beginning: The four great books of Charles Darwin (pp. 1255–1478). Norton.Google Scholar
Dehaene, S., & Changeux, J. P. (2011). Experimental and theoretical approaches to conscious processing. Neuron, 70, 200–227.10.1016/j.neuron.2011.03.018CrossRefGoogle ScholarPubMed
Edelman, B., & Seth, A. K. (2009). Animal consciousness: A synthetic approach. TINS, 32(9), 476–484.Google ScholarPubMed
Eibl-Eibesfeldt, I. (1988). The biological foundation of aesthetics. In Rentschler, I., Herzberger, B. and Epstein, D. (Eds.). Beauty and the Brain: Biological aspects of aesthetics (pp 29–69). Springer.10.1007/978-3-0348-6350-6_3CrossRefGoogle Scholar
Epstein, D. (1988). Tempo relations in music. In Rentschler, I., Herzberger, B., & Epstein, D. (Eds.), Beauty and the brain: Biological aspects of aesthetics (pp. 91–116). Springer.CrossRefGoogle Scholar
Fuster, J. M. (2015). The prefrontal cortex (5th ed.). Elsevier.10.1016/B978-0-12-407815-4.00002-7CrossRefGoogle Scholar
Gardiner, M. F. (2012). Emotional participation in musical and non-musical behaviors. Behavioral and Brain Sciences, 35(3), 149–150.10.1017/S0140525X11001506CrossRefGoogle ScholarPubMed
Gardiner, M. F. (2015). Integration of cognition and emotion in physical and mental actions in musical and other behaviors. Behavioral and Brain Sciences, 38, 24–25.10.1017/S0140525X14000909CrossRefGoogle ScholarPubMed
Gardiner, M. F. (2016). Modulation of behavior in communicating emotion. Animal Sentience, 4(4), 1–5.Google Scholar
Gardiner, M. F. (2020a). Chapter 32: Relationships between intrinsic and broader educational benefits of singing training. In Routledge companion to interdisciplinary studies in singing (Vol. 2, pp. 529–539). Education.Google Scholar
Gardiner, M. F. (2020b). Academic skill learning and the problem of complexity: II: Underdeveloped mental action, its role in students who struggle as their formal education begins, and evidence from Kodàly music training for opportunity to address this problem. International Journal for Complexity in Education, 1(2), 185–207.Google Scholar
Gardiner, M. F., Fox, A., Knowles, F., & Jeffrey, D. (1996). Learning improved by arts training. Nature, 381, 284.CrossRefGoogle ScholarPubMed
Griffin, D. R. (2000). Scientific approaches to animal consciousness.American Anthropologist, 4, 889–892.Google Scholar
Habibi, A., & Damasio, A. (2014). Music, feelings, and the human brain. Psychomusicology: Music, Mind and Brain, 24(1), 92–102.10.1037/pmu0000033CrossRefGoogle Scholar
Hodges, D. A. (2016). The neuroaesthetics of music. In Hallam, S., Cross, I. and Thaut, M. (Eds.), The Oxford handbook of music Psychology (2nd ed., pp. 247–262). Oxford University Press.Google Scholar
Huron, D. (2016). Aesthetics. In Hallam, S., Cross, I. and Thaut, M. (Eds.), The Oxford handbook of music psychology (2nd ed., pp. 233–246). Oxford University Press.Google Scholar
Jaynes, J. (1990). The origin of consciousness in the breakdown of the bicameral mind. Houghton Mifflin.Google Scholar
Jerison, H. J. (1989). Brain size and the evolution of mind. 59th James Arthur Lecture on the evolution of the human brain. American museum of Natural History. Retrieved from H. J. Jerison web site, UCLA, Los Angeles, CA.Google Scholar
Juslin, P. (2016). Emotional reactions to music. In Hallam, S., Cross, I. & Thaut, M. (Eds.), The Oxford handbook of music Psychology (2nd ed., pp. 197–214). Oxford University Press.Google Scholar
Juslin, P., & Lindstrom, E.. (2016). Emotion in music performance. In Hallam, S., Cross, I. & Thaut, M. (Eds.), The Oxford handbook of music psychology (2nd ed., pp. 597–614). Oxford University Press.Google Scholar
Juslin, P., & Zentner, M. R. (2002). Current trends in the study of music and emotion: Overture. Musicae scientiae. Special issue, 2001–2002, 3–21.Google Scholar
Lamme, V. A. F. (2006). Towards a neural stance on consciousness. TIGS, 10(11), 494–501.Google ScholarPubMed
Levy, J. (1988). Cerebral asymmetry and aesthetic experience. In Rentschler, I., Herzberger, B. & Epstein, D. (Eds.), Beauty and the brain: Biological aspects of aesthetics (pp. 219–242). Springer.10.1007/978-3-0348-6350-6_10CrossRefGoogle Scholar
Libet, B. (1985). Unconscious cerebral initiative and the role of conscious will in voluntary action. Behavioral and Brain Sciences, 8(4), 529–539.CrossRefGoogle Scholar
Lieberman, P. (2006). Toward an evolutionary biology of language. Belknap Press of Harvard University Press.10.2307/j.ctv22jnsvvCrossRefGoogle Scholar
Lieberman, P. (2017). The theory that changed everything: ”On the origin of species” as a work in progress. Columbia University Press.CrossRefGoogle Scholar
Luria, A. R. (1980). Higher cortical functions in man (2nd ed.). Consultants Bureau.10.1007/978-1-4615-8579-4CrossRefGoogle Scholar
Mashour, G. A., Roelsfsema, P., Changeux, J.-P., & Dehaene, S. (2020). Conscious processing and the neuronal workspace hypothesis. Neuron, 105, 776–798.CrossRefGoogle ScholarPubMed
Nieder, A., Wagener, L., & Rinnert, P. (2020). A neural correlate of sensory consciousness in a corvid bird. Science (New York, N.Y.), 369(6511), 1626–1629.10.1126/science.abb1447CrossRefGoogle Scholar
Sperry, R. (1983). Science and moral priority: Merging mind, brain and human values. Columbia University Press.Google Scholar
Sperry, R. (1984). Consciousness, personal identity and the divided brain. Neuropsychologia, 22(6), 661–673.10.1016/0028-3932(84)90093-9CrossRefGoogle ScholarPubMed
Turner, F., & Pöppel, E. (1988). Metered poetry, the brain and time. In Rentschler, I., Herzberger, B. & Epstein, D. (Eds.), Beauty and the brain: Biological aspects of aesthetics (pp. 71–90). Springer.10.1007/978-3-0348-6350-6_4CrossRefGoogle Scholar
Winner, E., Goldstein, T. R., & Vincent-Lancrin, S. (2013). Art for art's sake? The impact of arts education. OECD Publishing.10.1787/9789264180789-enCrossRefGoogle Scholar
Target article
Music as a coevolved system for social bonding
Related commentaries (24)
A boldly comparative approach will strengthen co-evolutionary accounts of musicality's origins
A neurodevelopmental disorders perspective into music, social attention, and social bonding
Beyond “consistent with” adaptation: Is there a robust test for music adaptation?
Clarifying the link between music and social bonding by measuring prosociality in context
Ecological and psychological factors in the cultural evolution of music
Evolutionary linguistics can help refine (and test) hypotheses about how music might have evolved
Human evolution of gestural messaging and its critical role in the human development of music
If it quacks like a duck: The by-product account of music still stands
Is neural entrainment to rhythms the basis of social bonding through music?
Is the MSB hypothesis (music as a coevolved system for social bonding) testable in the Popperian sense?
Isochrony, vocal learning, and the acquisition of rhythm and melody
Music and dance are two parallel routes for creating social cohesion
Music as a social bond in patients with amnesia
Music as a trait in evolutionary theory: A musicological perspective
Not by signalling alone: Music's mosaicism undermines the search for a proper function
Oxytocin as an allostatic agent in the social bonding effects of music
Pre-hunt charade as the cradle of human musicality
Progress without exclusion in the search for an evolutionary basis of music
Rapid dissonant grunting, or, but why does music sound the way it does?
Sex and drugs and rock and roll
Social bonding and music: Evidence from lesions to the ventromedial prefrontal cortex
The evolution of music as artistic cultural innovation expressing intuitive thought symbolically
Where they sing solo: Accounting for cross-cultural variation in collective music-making in theories of music evolution
Why don't cockatoos have war songs?
Author response
Toward a productive evolutionary understanding of music
Toward inclusive theories of the evolution of musicality