Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T19:06:51.909Z Has data issue: false hasContentIssue false

“How Foraging Works”: Let's not forget the physiological mechanisms of energy balance

Published online by Cambridge University Press:  19 March 2019

Tom V. Smulders
Affiliation:
Institute of Neuroscience, Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK. [email protected]@ncl.ac.ukhttps://www.staff.ncl.ac.uk/tom.smulders/http://www.lindsayjenniferhenderson.com/
Timothy Boswell
Affiliation:
School of Natural and Environmental Sciences, Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne NE1 7RU, UK. [email protected]://www.ncl.ac.uk/nes/staff/profile/timothyboswell.html#background
Lindsay J. Henderson
Affiliation:
Institute of Neuroscience, Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK. [email protected]@ncl.ac.ukhttps://www.staff.ncl.ac.uk/tom.smulders/http://www.lindsayjenniferhenderson.com/

Abstract

Anselme & Güntürkün propose a novel mechanism to explain the increase in foraging motivation when experiencing an unpredictable food supply. However, the physiological mechanisms that maintain energy homeostasis already control foraging intensity in response to changes in energy balance. Therefore, unpredictability may just be one of many factors that feeds into the same dopaminergic “wanting” system to control foraging intensity.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcaro, A. & Panksepp, J. (2011) The SEEKING mind: Primal neuro-affective substrates for appetitive incentive states and their pathological dynamics in addictions and depression. Neuroscience and Biobehavioral Reviews 35(9):1805–20. doi: 10.1016/j.neubiorev.2011.03.002.Google Scholar
Bartness, T. J. & Clein, M. R. (1994) Effects of food-deprivation and restriction, and metabolic blockers on food hoarding in Siberian hamsters. American Journal of Physiology 266(4):R111117.Google Scholar
Berridge, K. C., Ho, C. Y., Richard, J. M. & DiFeliceantonio, A. G. (2010) The tempted brain eats: Pleasure and desire circuits in obesity and eating disorders. Brain Research 1350:4364. doi: 10.1016/j.brainres.2010.04.003.Google Scholar
Boswell, T. & Dunn, I. C. (2017) Regulation of agouti-related protein and pro-opiomelanocortin gene expression in the avian arcuate nucleus. Frontiers in Endocrinology 8:75. doi: 10.3389/fendo.2017.00075.Google Scholar
Buckley, C. A. & Schneider, J. E. (2003) Food hoarding is increased by food deprivation and decreased by leptin treatment in Syrian hamsters. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology 285(5):1021–29.Google Scholar
Day, D. E. & Bartness, T. J. (2004) Agouti-related protein increases food hoarding more than food intake in Siberian hamsters. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology 286(1):R3845. doi: 10.1152/ajpregu.00284.200300284.2003 [pii].Google Scholar
Dietrich, M. O., Bober, J., Ferreira, J. G., Tellez, L. A., Mineur, Y. S., Souza, D. O., Gao, X.-B., Picciotto, M. R., Araújo, I., Liu, Z.-W. & Horvath, T. L. (2012) AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors. Nature Neuroscience 15(8):1108–10. doi: 10.1038/nn.3147.Google Scholar
Dietrich, M. O., Zimmer, M. R., Bober, J. & Horvath, T. L. (2015) Hypothalamic Agrp neurons drive stereotypic behaviors beyond feeding. Cell 160(6):1222–32. doi: 10.1016/j.cell.2015.02.024.Google Scholar
Ferrario, C. R., Labouebe, G., Liu, S., Nieh, E. H., Routh, V. H., Xu, S. J. & O'Connor, E. C. (2016) Homeostasis meets motivation in the battle to control food intake. Journal of Neuroscience 36(45):11469–81. doi: 10.1523/Jneurosci.2338-16.2016.Google Scholar
Henderson, L. J., Cockcroft, R. C., Kaiya, H., Boswell, T. & Smulders, T. V. (2018) Peripherally injected ghrelin and leptin reduce food hoarding and mass gain in the coal tit (Periparus ater). Proceedings of the Royal Society B: Biological Sciences 285(1879):20180417. doi: 10.1098/rspb.2018.0417.Google Scholar
Ikemoto, S. & Panksepp, J. (1999) The role of nucleus accumbens dopamine in motivated behavior: A unifying interpretation with special reference to reward-seeking. Brain Research Reviews 31(1):641. doi: 10.1016/S0165-0173(99)00023-5.Google Scholar
Keen-Rhinehart, E., Dailey, M. J. & Bartness, T. (2010) Physiological mechanisms for food-hoarding motivation in animals. Philosophical Transactions of the Royal Society B: Biological Sciences 365(1542):961–75.Google Scholar
Lees, J. J., Lindholm, C., Batakis, P., Busscher, M. & Altimiras, J. (2017) The physiological and neuroendocrine correlates of hunger in the red junglefowl (Gallus gallus). Scientific Reports 7:17984. doi: 10.1038/s41598-017-17922-w.Google Scholar
Palmiter, R. D. (2007) Is dopamine a physiologically relevant mediator of feeding behavior? Trends in Neurosciences 30(8):375–81.Google Scholar
Piazza, P. V., RougePont, F., Deroche, V., Maccari, S., Simon, H. & LeMoal, M. (1996) Glucocorticoids have state-dependent stimulant effects on the mesencephalic dopaminergic transmission. Proceedings of the National Academy of Sciences USA 93(16):8716–20. doi: 10.1073/pnas.93.16.8716.Google Scholar
Roseberry, A. G., Stuhrman, K. & Dunigan, A. I. (2015) Regulation of the mesocorticolimbic and mesostriatal dopamine systems by alpha-melanocyte stimulating hormone and agouti-related protein. Neuroscience and Biobehavioral Reviews 56:1525. doi: 10.1016/j.neubiorev.2015.06.020.Google Scholar
Teubner, B. J., Keen-Rhinehart, E. & Bartness, T. J. (2012) Third ventricular coinjection of subthreshold doses of NPY and AgRP stimulate food hoarding and intake and neural activation. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology 302(1):R37R48. doi: 10.1152/ajpregu.00475.2011.Google Scholar
Thomas, M. A. & Xue, B. (2017) Mechanisms for AgRP neuron-mediated regulation of appetitive behaviors in rodents. Physiology & Behavior 190:3442. doi: 10.1016/j.physbeh.2017.10.006.Google Scholar