Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T00:50:39.732Z Has data issue: false hasContentIssue false

Don't miss the chance to reap the fruits of recent advances in behavioral genetics

Published online by Cambridge University Press:  11 September 2023

Nina Alexander
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany. [email protected]; UKGM Gießen/Marburg-Team Center for Mind, Brain and Behavior, Philipps University Marburg, Marburg, Germany
Sabrina Illius
Affiliation:
Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany [email protected] ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
Dennis Feyerabend
Affiliation:
Department of Developmental Psychology, University of Hamburg, Hamburg, Germany [email protected] [email protected]
Jan Wacker
Affiliation:
Department of Differential Psychology and Psychological Assessment, University of Hamburg, Hamburg, Germany [email protected]; https://www.koku.uni-hamburg.de/en/koku-team/liszkowski.html
Ulf Liszkowski
Affiliation:
Department of Developmental Psychology, University of Hamburg, Hamburg, Germany [email protected] [email protected]

Abstract

In her target article, Burt revives a by now ancient debate on nature and nurture, and the ways to measure, disentangle, and ultimately trust one or the other of these forces. Unfortunately, she largely dismisses recent advances in behavior genetics and its huge potential in contributing to a better prediction and understanding of complex traits in social sciences.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adeyemo, A., Balaconis, M. K., Darnes, D. R., Fatumo, S., Granados Moreno, P., Hodonsky, C. J., … Polygenic Risk Score Task Force of the International Common Disease, A. (2021). Responsible use of polygenic risk scores in the clinic: Potential benefits, risks and gaps. Nature Medicine, 27(11), 18761884. doi: 10.1038/s41591-021-01549-6Google Scholar
Allegrini, A. G., Selzam, S., Rimfeld, K., von Stumm, S., Pingault, J. B., & Plomin, R. (2019). Genomic prediction of cognitive traits in childhood and adolescence. Molecular Psychiatry, 24(6), 819827. doi: 10.1038/s41380-019-0394-4CrossRefGoogle ScholarPubMed
Arloth, J., Bogdan, R., Weber, P., Frishman, G., Menke, A., Wagner, K. V., … Binder, E. B. (2015). Genetic differences in the immediate transcriptome response to stress predict risk-related brain function and psychiatric disorders. Neuron, 86(5), 11891202. doi: 10.1016/j.neuron.2015.05.034CrossRefGoogle ScholarPubMed
Chen, C., Lu, Y., Lundström, S., Larsson, H., Lichtenstein, P., & Pettersson, E. (2022). Associations between psychiatric polygenic risk scores and general and specific psychopathology symptoms in childhood and adolescence between and within dizygotic twin pairs. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 63(12), 15131522. doi: 10.1111/jcpp.13605.CrossRefGoogle ScholarPubMed
Czamara, D., Tissink, E., Tuhkanen, J., Martins, J., Awaloff, Y., Drake, A. J., … Binder, E. B. (2021). Combined effects of genotype and childhood adversity shape variability of DNA methylation across age. Translational Psychiatry, 11(1), 88. doi: 10.1038/s41398-020-01147-zCrossRefGoogle ScholarPubMed
Dalvie, S., Maihofer, A. X., Coleman, J. R. I., Bradley, B., Breen, G., Brick, L. A., … Nievergelt, C. M. (2020). Genomic influences on self-reported childhood maltreatment. Translational Psychiatry, 10(1), 38. doi: 10.1038/s41398-020-0706-0CrossRefGoogle ScholarPubMed
Derzon, J. H. (2010). The correspondence of family features with problem, aggressive, criminal, and violent behavior: A meta-analysis. Journal of Experimental Criminology, 6(3), 263292. doi: 10.1007/s11292-010-9098-0CrossRefGoogle Scholar
Dou, J., Wu, D., Ding, L., Wang, K., Jiang, M., Chai, X., … Wang, C. (2021). Using off-target data from whole-exome sequencing to improve genotyping accuracy, association analysis and polygenic risk prediction. Briefings in Bioinformatics, 22(3), bbaa084. doi: 10.1093/bib/bbaa084CrossRefGoogle ScholarPubMed
Elliott, M. L., Belsky, D. W., Anderson, K., Corcoran, D. L., Ge, T., Knodt, A., … Hariri, A. R. (2019). A polygenic score for higher educational attainment is associated with larger brains. Cerebral Cortex (New York, N.Y.: 1991), 29(8), 34963504. doi: 10.1093/cercor/bhy219CrossRefGoogle ScholarPubMed
Falck-Ytter, T., Hamrefors, L., Siqueiros Sanches, M., Portugal, A. M., Taylor, M., Li, D., … Ronald, A. (2021). The Babytwins Study Sweden (BATSS): A multi-method infant twin study of genetic and environmental factors influencing infant brain and behavioral development. Twin Research and Human Genetics, 24(4), 217227. doi: 10.1017/thg.2021.34CrossRefGoogle ScholarPubMed
Hart, S. A., Little, C., & van Bergen, E. (2021). Nurture might be nature: Cautionary tales and proposed solutions. npj Science of Learning, 6(1), 2. doi: 10.1038/s41539-020-00079-zCrossRefGoogle ScholarPubMed
Hivert, V., Sidorenko, J., Rohart, F., Goddard, M. E., Yang, J., Wray, N. R., … Visscher, P. M. (2021). Estimation of non-additive genetic variance in human complex traits from a large sample of unrelated individuals. American Journal of Human Genetics, 108(5), 786798. doi: 10.1016/j.ajhg.2021.02.014CrossRefGoogle ScholarPubMed
Hong, H., Xu, L., Liu, J., Jones, W. D., Su, Z., Ning, B., … Shi, L. (2012). Technical reproducibility of genotyping SNP arrays used in genome-wide association studies. PLoS ONE, 7(9), e44483. doi: 10.1371/journal.pone.0044483CrossRefGoogle ScholarPubMed
Judd, N., Sauce, B., Wiedenhoeft, J., Tromp, J., Chaarani, B., Schliep, A., … Klingberg, T. (2020). Cognitive and brain development is independently influenced by socioeconomic status and polygenic scores for educational attainment. Proceedings of the National Academy of Sciences of the USA, 117(22), 1241112418. doi: 10.1073/pnas.2001228117CrossRefGoogle ScholarPubMed
Kappelmann, N., Czamara, D., Rost, N., Moser, S., Schmoll, V., Trastulla, L., … Arloth, J. (2021). Polygenic risk for immuno-metabolic markers and specific depressive symptoms: A multi-sample network analysis study. Brain Behavior and Immunity, 95, 256268. doi: 10.1016/j.bbi.2021.03.024CrossRefGoogle ScholarPubMed
Karlsson Linnér, R., Mallard, T. T., Barr, P. B., Sanchez-Roige, S., Madole, J. W., Driver, M. N., … Collaborators, C. (2021). Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self-regulation and addiction. Nature Neuroscience, 24(10), 13671376. doi: 10.1038/s41593-021-00908-3CrossRefGoogle ScholarPubMed
Krapohl, E., Patel, H., Newhouse, S., Curtis, C. J., von Stumm, S., Dale, P. S., … Plomin, R. (2018). Multi-polygenic score approach to trait prediction. Molecular Psychiatry, 23(5), 13681374. doi: 10.1038/mp.2017.163CrossRefGoogle ScholarPubMed
Martikainen, P., Korhonen, K., Jelenkovic, A., Lahtinen, H., Havulinna, A., Ripatti, S., … Silventoinen, K. (2021). Joint association between education and polygenic risk score for incident coronary heart disease events: A longitudinal population-based study of 26 203 men and women. Journal of Epidemiology & Community Health, 75(7), 651657. doi: 10.1136/jech-2020-214358.CrossRefGoogle Scholar
Miguel, P. M., Pereira, L. O., Barth, B., de Mendonça Filho, E. J., Pokhvisneva, I., Nguyen, T. T. T., … Silveira, P. P. (2019). Prefrontal cortex dopamine transporter gene network moderates the effect of perinatal hypoxic-ischemic conditions on cognitive flexibility and brain gray matter density in children. Biological Psychiatry, 86(8), 621630. doi: 10.1016/j.biopsych.2019.03.983CrossRefGoogle ScholarPubMed
Mitchell, B. L., Thorp, J. G., Wu, Y., Campos, A. I., Nyholt, D. R., Gordon, S. D., … Byrne, E. M. (2021). Polygenic risk scores derived from varying definitions of depression and risk of depression. JAMA Psychiatry, 78(10), 11521160. doi: 10.1001/jamapsychiatry.2021.1988CrossRefGoogle ScholarPubMed
Okbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati, S. M., … LifeLines Cohort, S. (2022). Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nature Genetics, 54(4), 437449. doi: 10.1038/s41588-022-01016-zCrossRefGoogle ScholarPubMed
Opel, N., Amare, A. T., Redlich, R., Repple, J., Kaehler, C., Grotegerd, D., … Dannlowski, U. (2020). Cortical surface area alterations shaped by genetic load for neuroticism. Molecular Psychiatry, 25(12), 34223431. doi: 10.1038/s41380-018-0236-9CrossRefGoogle ScholarPubMed
Østergaard, S. D., Trabjerg, B. B., Als, T. D., Climent, C. A., Privé, F., Vilhjálmsson, B. J., … Agerbo, E. (2020). Polygenic risk score, psychosocial environment and the risk of attention-deficit/hyperactivity disorder. Translational Psychiatry, 10(1), 335. doi: 10.1038/s41398-020-01019-6CrossRefGoogle ScholarPubMed
Plomin, R., & von Stumm, S. (2022). Polygenic scores: Prediction versus explanation. Molecular Psychiatry, 27(1), 4952. doi: 10.1038/s41380-021-01348-yCrossRefGoogle ScholarPubMed
Polderman, T. J. C., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47(7), 702709. doi: 10.1038/ng.3285CrossRefGoogle ScholarPubMed
Restrepo-Lozano, J. M., Pokhvisneva, I., Wang, Z., Patel, S., Meaney, M. J., Silveira, P. P., & Flores, C. (2022). Corticolimbic DCC gene co-expression networks as predictors of impulsivity in children. Molecular Psychiatry, 27(6), 27422750. doi: 10.1038/s41380-022-01533-7CrossRefGoogle ScholarPubMed
Ritchie, S. C., Lambert, S. A., Arnold, M., Teo, S. M., Lim, S., Scepanovic, P., … Inouye, M. (2021). Integrative analysis of the plasma proteome and polygenic risk of cardiometabolic diseases. Nature Metabolism, 3(11), 14761483. doi: 10.1038/s42255-021-00478-5CrossRefGoogle ScholarPubMed
von Stumm, S., Smith-Woolley, E., Ayorech, Z., McMillan, A., Rimfeld, K., Dale, P. S., & Plomin, R. (2020). Predicting educational achievement from genomic measures and socioeconomic status. Developmental Science, 23(3), e12925. doi: 10.1111/desc.12925CrossRefGoogle ScholarPubMed
Wainschtein, P., Jain, D., Zheng, Z., Aslibekyan, S., Becker, D., Bi, W., … Consortium, N. T.-O. f. P. M. (2022). Assessing the contribution of rare variants to complex trait heritability from whole-genome sequence data. Nature Genetics, 54(3), 263273. doi: 10.1038/s41588-021-00997-7CrossRefGoogle ScholarPubMed
Warrier, V., Kwong, A. S. F., Luo, M., Dalvie, S., Croft, J., Sallis, H. M., … Cecil, C. A. M. (2021). Gene–environment correlations and causal effects of childhood maltreatment on physical and mental health: A genetically informed approach. The Lancet. Psychiatry, 8(5), 373386. doi: 10.1016/s2215-0366(20)30569-1CrossRefGoogle ScholarPubMed
Winslow, E. B., & Shaw, D. S. (2007). Impact of neighborhood disadvantage on overt behavior problems during early childhood. Aggressive Behavior, 33(3), 207219. https://doi.org/10.1002/ab.20178CrossRefGoogle ScholarPubMed