The motion of a two-dimensional bubble rising at a constant velocity U in an inclined tube of width H is considered. The bubble extends downwards without limit, and is bounded on the right by a wall of the tube, and on the left by a free surface. The same flow configuration describes also a jet emerging from a nozzle and falling down along an inclined wall. The acceleration of gravity g and the surface tension T are included in the free surface condition. The problem is characterized by the Froude number the angle β between the left wall and the horizontal, and the angle γ between the free surface and the right wall at the separation point. Numerical solutions are obtained via series truncation for all values of 0 < β < π. The results extend previous calculations of Vanden-Broeck [12–14] for β = π/2 and of Couët and Strumolo [3] for 0 < β < π/2. It is found that the behavior of the solutions depends on whether 0 < β 2π/3 or 2π/3 ≤ β < π. When T = 0, it is shown that there is a critical value F of Froude number for each 0 < β 2π/3 such that solutions with γ = 0, π/3 and π - β occur for F > Fc F = Fc and F < Fc respectively, and that all solutions are characterized by γ = 0 for 2π/3 ≤ β < π. When a small amount of surface tension T is included in the free surface condition, it is found that for each 0 < β < π there exists an infinite discrete set of values of F for which γ = π - β. A particular value F* of the Froude number for which T = 0 and γ = π - β is selected by taking the limit as T approaches zero. The numerical values of F* and the corresponding free surface profiles are found to be in good agreement with experimental data for bubbles rising in an inclined tube when 0 < β < π/2.