We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Sensory quality of pork is a complex phenotype determined by interactions between genetic and environmental factors. This study aimed at describing the respective influences of breed and production system on the development of pork quality. Plasma stress indicators and Longissimus muscle (LM) composition, physicochemical and sensory quality traits were determined in two contrasted breeds – the conventional Large White (LW, n=40) and the French local Basque (B, n=60). Pigs were reared in either a conventional (C; n=20 per breed), alternative (A; sawdust bedding and outdoor area, n=20 per breed) or extensive system (E; free-range, n=20 B). All the pigs from A and C systems were slaughtered at the same slaughterhouse, whereas B pigs from the E system were slaughtered at a local commercial abattoir. Major breed differences were found for almost all traits under study. LM from B pigs exhibited higher lipid, lower water and collagen concentrations, as well as lower collagen thermal solubility (P<0.001). Although plasma stress indicators at slaughter did not differ between breeds, except lower (P<0.05) lactate levels in B pigs, they exhibited higher LM pH1 and pHu values, and lower meat lightness, hue angle, water (drip, thawing and cooking) losses, glycolytic potential and shear force. Sensory analyses highlighted higher redness, marbling, tenderness, juiciness and flavour scores (P<0.01) of meat from B compared with LW pigs. Within both LW and B breeds, compared with C, the A system did not (P>0.05) influence plasma stress indicators, LM chemical composition and physicochemical or sensory traits of pork. In contrast, within the B pigs, the E system affected the meat quality more. Lower plasma cortisol levels (P<0.05), but higher plasma lactate, creatine kinase and lactate dehydrogenase activities, and more skin lesions (P<0.05), indicating higher muscular activity during pre-slaughter handling, were found in pigs produced in the E compared with the C system. E pigs exhibited higher meat pH1 and pHu values and shear force (P<0.01) and exhibited lower lightness, hue angle and drip and thawing losses (P<0.01) compared with the C pigs, whereas LM lipid, protein or collagen concentrations were not affected. Regarding sensory traits, the E system produced redder meat, but did not impact the eating quality of pork. Altogether, this study demonstrates that differences in meat quality between B and LW breeds can be modulated by extensive pig production system.
Non-linear models were analysed to describe both the biological and commercial growth curves of the Segureña sheep, one of the most important Spanish breeds. We evaluated Brody, von Bertalanffy, Verhulst, logistic and Gompertz models, using historical data from the National Association of Segureña Sheep Breeders (ANCOS). These records were collected between 2000 and 2013, from a total of 129 610 weight observations ranging from birth to adulthood. The aim of this research was to establish the mathematical behaviour of body development throughout this breed’s commercial life (birth to slaughter) and biological life (birth to adulthood); comparison between both slopes gives important information regarding the best time for slaughter, informs dietary advice according to animals’ needs, permits economical predictions of productions and, by using the curve parameters as selection criteria, enables improvements in growth characteristics of the breed. Models were fitted according to the non-linear regression procedure of statistical package SPSS version19. Model parameters were estimated using the Levenberg–Marquardt algorithm. Candidate models were compared using the determinative coefficient, mean square error, number of iterations, Akaike information coefficient and biological coherence of the estimated parameters. The von Bertalanffy and logistic models were found to be best suited to the biological and commercial growth curves, respectively, for both sexes. The Brody equation was found to be unsuitable for studying the commercial growth curve. Differences between the parameters in both sexes indicate a strong impact of sexual dimorphism on growth. This can emphasize the value of the highest growth rate for females, indicating that they reach maturity earlier.
Determination of appropriate nutritional requirements is essential to optimize the productivity and longevity of lactating sows. The current recommendations for requirements do not consider the large variation between animals. Therefore, the aim of this study was to determine the amino acid recommendations for lactating sows using a stochastic modeling approach that integrates population variation and uncertainty of key parameters into establishing nutritional recommendations for lactating sows. The requirement for individual sows was calculated using a factorial approach by adding the requirement for maintenance and milk. The energy balance of the sows was either negative or zero depending on feed intake being a limiting factor. Some parameters in the model were sow-specific and others were population-specific, depending on state of knowledge. Each simulation was for 1000 sows repeated 100 times using Monte Carlo simulation techniques. BW, back fat thickness of the sow, litter size (LS), average litter gain (LG), dietary energy density and feed intake were inputs to the model. The model was tested using results from the literature, and the values were all within ±1 s.d. of the estimated requirements. Simulations were made for a group of low- (LS=10 (s.d.=1), LG=2 kg/day (s.d.=0.6)), medium- (LS=12 (s.d.=1), LG=2.5 kg/day (s.d.=0.6)) and high-producing (LS=14 (s.d.=1), LG=3.5 kg/day (s.d.=0.6)) sows, where the average requirement was the result. In another simulation, the requirements were estimated for each week of lactation. The results were given as the median and s.d. The average daily standardized ileal digestible (SID) protein and lysine requirements for low-, medium- and high-producing sows were 623 (CV=2.5%) and 45.1 (CV=4.8%); 765 (CV=4.9%) and 54.7 (CV=7.0%); and 996 (CV=8.5%) and 70.8 g/day (CV=9.6%), respectively. The SID protein and lysine requirements were lowest at week 1, intermediate at week 2 and 4 and the highest at week 3 of lactation. The model is a valuable tool to develop new feeding strategies by taking into account the variable requirement between groups of sows and changes during lactation. The inclusion of between-sow variation gives information on safety margins when developing new dietary recommendations of amino acids and protein for lactating sows.
Under intensive pig husbandry, outdoor systems offer a more complex physical and social environment compared with indoor systems (farrowing sheds). As the rearing environment affects behavioural development, it can, therefore, influence behavioural responses of pigs to stressful environments in later stages of production. We tested how the rearing environment influenced behavioural responses to a novel arena test in piglets on the day that they were weaned and mixed into large groups. We recorded video footage and compared the behavioural responses of 30 outdoor-raised and 30 farrowing shed-raised piglets tested in an experimental arena and sequentially exposed to four challenges (each for 5 min) on the day of weaning. Quantitative and qualitative behavioural measures were recorded using time budgets and scoring demeanour or ‘qualitative behavioural expression’ (using Qualitative Behavioural Assessment (QBA)). When held in isolation (challenge 1), both groups were scored as more ‘scared/worried’, while outdoor-raised piglets spent more time eating and jumping against the arena walls. Both groups interacted with a plastic ball (challenge 2: exposure to a novel object) during which they were scored as more ‘playful/curious’ than other challenges. When a food bowl was introduced (challenge 3), farrowing shed-raised piglets were more interested in playing with the food bowl itself, whereas outdoor-raised piglets spent more time eating the feed. Finally, there were no significant differences in social behaviour (challenge 4: introduction of another piglet) between the two groups in terms of the latency to contact each other, amount of time recorded engaged in aggressive/non-aggressive social interactions or QBA scores. Although piglets spent 30% of their time interacting with the other piglet, and half of this time (47%) was engaged in negative interactions (pushing, biting), the levels of aggression were not different between the two groups. Overall, outdoor-raised piglets ate more and were scored as more ‘calm/passive’, whereas farrowing shed-raised piglets spent more time investigating their environment and were scored as more ‘playful/inquisitive’. In conclusion, we did not find differences in behaviour between outdoor-raised and farrowing shed-raised piglets that would highlight welfare issues. The differences found in this study may reflect conflicting affective states, with responses to confinement, neophobia and motivation for exploration evident.
The aim of this study was to compare a fully slatted concrete floor (concrete slatted (CS)) with the same floor on which synthetic rubber slats were placed on the concrete slats (rubber slatted (RS)) as housing solution for finishing beef cattle. The present study involved five commercial beef cattle farms in which the floor of at least three pens was kept as fully slatted, and in an equal number of pens a rubber cover was placed on the floor, tightly matching the gap profile of the concrete slats to allow the drainage of manure. A total of 326 finishing beef bulls were used (153 on CS and 173 on RS), and regardless of the floor treatment animals were housed in groups of 6 to 12 bulls/pen with a space allowance of 3.1±0.2 m2/bull. Bulls had similar initial live weights (422.3 kg on CS and 425.0 kg on RS), but bulls on RS were heavier at the end of the finishing period with a higher average daily gain than bulls kept on CS (1.53 v. 1.46 kg/day; P<0.05). The proportion of bulls treated for locomotor problems was lower in RS pens compared with CS. Rubber covering prevented the occurrence of bursitis, but it increased the odds for hoof overgrowth at end of the finishing period. Hoof overgrowth detected in vivo in bulls on RS was confirmed at the slaughterhouse by the longer dorsal wall and diagonal lengths of the hoof as well as by a more acute toe angle. Compared with bulls on CS, bulls on RS showed less inactivity and resting time, increased social interactions, decreased abnormal lying down and unsuccessful attempts to lie down, as well as shortened the time for lying down. Bulls in RS pens were dirtier compared with those in CS pens, likely due to the draining gaps being reduced to 11.6±1.2% of the total pen surface compared with the 16.9±1.7% in CS pens. This study gave further evidence about the positive effects of the RS floor on growth performance and welfare of finishing beef cattle, although compromising cleanliness and hoof overgrowth.
A total of 64 intensively reared Friesian steers were used in a 2×2×2 design to study the effects of age of castration (15 days old v. 5 months old), dietary protein level (14.6% v. 16.8%; DM basis) and lysine/methionine (lys/met) ratio (3.0 v. 3.4) on meat quality. The lys/met ratio of 3.0 was reached with supplementation of protected methionine. Animals were slaughtered at a live weight of 443.5±26.2 kg at around 12 months of age. Colour and lipid oxidation were measured in the longissimus thoracis muscle throughout the 14 days of display under modified atmospheric and commercial display conditions. A panel of 17 consumers assessed daily the visual acceptability of the meat on display. A consumer acceptability eating test was also performed with 120 consumers in meat aged for 7 days under vacuum conditions. Lipid oxidation was not influenced by castration age and the protein level in the diet. Castration age did not affect meat colour, but meat from the low protein level diet and the low lys/met ratio showed higher redness (a*) from 3 days of display onwards. Nevertheless, from 6 days onwards, consumer visual acceptability was below the level of acceptance in all treatments, and even from 5 days onwards in those animals that underwent early castration and were fed either a high protein diet or a combination diet low in protein content and high in lys/met ratio. The best accepted treatments throughout the display period were those from late castrated animals fed a low protein diet, probably related to other visual aspects. However, the best accepted meat after consumption was that from late castrated animals fed high protein and high lys/met. The addition of protected methionine to reach lys/met levels of 3.0 did not improve beef acceptability, with the high protein diet being preferred by consumers in terms of palatability in late castrated animals.
The aim of this study was to investigate the effects of different levels of cadmium supplementation (0, 5, 10, 20, 40 and 80 mg/kg) in the diet on performance, egg quality, tibia biomechanical properties and eggshell and bone mineral contents in laying quails. In this 10-week trial, a total of 96 laying quails, aged 21 weeks, were randomly distributed among six experimental groups. Each experimental group contained four replicates of four birds each. The performance parameters were adversely affected quadratically when cadmium was added to the diets in the concentrations of 20 mg/kg and above (P<0.01). The specific gravity and eggshell weight were maximal with the addition of 20 mg/kg cadmium to the diet. The biomechanical properties of the tibia were negatively affected by cadmium supplementation in quails (P<0.05). The eggshell boron content decreased linearly (P<0.001) with cadmium supplementation to the diet. The cadmium content in bone increased when cadmium was added to the diets (P<0.001). The bone boron concentration decreased as dietary cadmium supplementation was increased (P<0.001).
The objective of this meta-analysis was to develop and validate empirical equations predicting BW gain (BWG) and carcass traits of growing cattle from intake and diet composition variables. The modelling was based on treatment mean data from feeding trials in growing cattle, in which the nutrient supply was manipulated by wide ranges of forage and concentrate factors. The final dataset comprised 527 diets in 116 studies. The diets were mainly based on grass silage or grass silage partly or completely replaced by whole-crop silages, hay or straw. The concentrate feeds consisted of cereal grains, fibrous by-products and protein supplements. Mixed model regression analysis with a random study effect was used to develop prediction equations for BWG and carcass traits. The best-fit models included linear and quadratic effects of metabolisable energy (ME) intake per metabolic BW (BW0.75), linear effects of BW0.75, and dietary concentrations of NDF, fat and feed metabolisable protein (MP) as significant variables. Although diet variables had significant effects on BWG, their contribution to improve the model predictions compared with ME intake models was small. Feed MP rather than total MP was included in the final model, since it is less correlated to dietary ME concentration than total MP. None of the quadratic terms of feed variables was significant (P>0.10) when included in the final models. Further, additional feed variables (e.g. silage fermentation products, forage digestibility) did not have significant effects on BWG. For carcass traits, increased ME intake (ME/BW0.75) improved both dressing proportion (P<0.01) and carcass conformation (P<0.001) and increased (P<0.001) carcass fat score. Increased dietary CP concentration had no significant (P>0.10) effect on dressing proportion or carcass conformation score, but it increased (P<0.01) carcass fat score. The current study demonstrated that ME intake per BW0.75 was clearly the most important variable explaining the BWG response in growing cattle. The effect of increased ME supply displayed diminishing responses that could be associated with increased energy concentration of BWG, reduced diet metabolisability (proportion of ME of gross energy) and/or decreased efficiency of ME utilisation for growth with increased intake. Negative effects of increased dietary NDF concentration on BWG were smaller compared to responses that energy evaluation systems predict for energy retention. The present results showed only marginal effects of protein supply on BWG in growing cattle.
An understanding of the perceived importance of a variety of factors affecting the ease of handling of sheep and the interactions between these factors is valuable in improving profitability and welfare of the livestock. Many factors may contribute to animal behaviour during handling, and traditionally these factors have been assessed in isolation under experimental conditions. A human social component to this phenomenon also exists. The aim of this study was to gain a deeper understanding of the importance of a variety of factors affecting ease of handling, and the interactions between these from the perspective of the livestock transporter. Qualitative interviews were used to investigate the factors affecting sheep behaviour during handling. Interview transcripts underwent thematic analysis. Livestock transporters discussed the effects of attitudes and behaviours towards sheep, helpers, facilities, distractions, environment, dogs and a variety of sheep factors including breed, preparation, experience and sex on sheep behaviour during handling. Transporters demonstrated care and empathy and stated that patience and experience were key factors determining how a person might deal with difficult sheep. Livestock transporters strongly believed facilities (ramps and yards) had the greatest impact, followed by sheep experience (naivety of the sheep to handling and transport) and breed. Transporters also discussed the effects of distractions, time of day, weather, dogs, other people, sheep preparation, body condition and sheep sex on ease of handling. The concept of individual sheep temperament was indirectly expressed.
Intramuscular fat (IMF) % contributes positively to the juiciness and flavour of lamb and is therefore a useful indicator of eating quality. A rapid, non-destructive method of IMF determination like computed tomography (CT) would enable pre-sorting of carcasses based on IMF% and potential eating quality. Given the loin muscle (longissimus lumborum) is easy to sample, a single measurement at this site would be useful, providing is correlates well to other muscles. To determine the ability of CT to predict IMF%, this study used 400 animals and examined 5 muscles from three sections of the carcass: from the fore-section the m. supraspinatus and m. infraspinatus, from the saddle-section the m. longissimus lumborum and from the hind-section the m. semimembranosus and m. semitendinosus. The average CT pixel density of muscle was negatively associated with IMF% and can be used to predict IMF% although precision in this study was poor. The ability of CT to predict IMF% was greatest in the m. longissimus lumborum (slope −0.07) and smallest in the m. infraspinatus (slope −0.02). The correlation coefficients of IMF% between the five muscles were variable, with the highest correlation coefficients evident between muscles of the fore section (0.67 between the m. supraspinatus and the m. infraspinatus) and the weakest correlations were between the muscle of the fore and hind section. The correlation between the m. longissimus lumborum to the other muscles was fairly consistent with values ranging between 0.34 and 0.40 (partial correlation coefficient). The correlation between the proportion of carcass fat and the IMF% of the five muscles varied and was greatest in the m. longissimus lumborum (0.41).
The aim of this experiment was to study the effects of pen size and parity on maternal behaviour of twin-bearing Small-Tail Han ewes. A total of 24 ewes were allocated to a 2×2 design (six per pen), with parity (primiparous or multiparous) and pen size (large: 6.0×3.0 m; small: 6.0×1.5 m) as main effects at Linyi University, Shandong Province, China. Behaviour was observed from after parturition until weaning. All ewes were observed for 6 h every 5 days from 0700 to1000 h and from 1400 to 1700 h. Continuous focal animal sampling was used to quantify the duration of maternal behaviours: sucking, grooming and following as well as the frequency of udder accepting, udder refusing and low-pitched bleating. Oestradiol and cortisol concentrations in the faeces (collected in the morning every 5 days) were detected using EIA kits. All lambs were weighed 24 h after parturition and again at weaning at 35 days of age. The small pen size significantly reduced following (P<0.005), grooming (P<0.001) and suckling durations (P<0.05), as well as the frequency of udder refusals (P<0.001). However, there was a significant interaction with ewe parity, with decreased grooming and suckling in the small pen largely seen in the multiparous ewes (P<0.001). Independent of pen size, multiparous ewes accepted more sucking attempts by their lambs (P<0.05) and made more low-pitched bleats than primiparous ewes (P<0.001). Multiparous ewes had higher faecal oestradiol concentrations than primiparous ewes (P<0.001), and ewes in small pens had higher faecal cortisol levels compared with ewes in larger pens (P<0.001). As lambs increased in age, the duration of maternal grooming, following and suckling as well as frequency of udder acceptance and low-pitched bleating all declined, and the frequency of udder refusing increased (P<0.001 for all). Ewe parity, but not pen size, affected lamb weight gain during the period of observation (P<0.001). This is the first study to show that pen size, interacting with parity, can affect the expression of maternal behaviour in sheep during lactation. The study is also the first to report on the maternal behaviour of Chinese native sheep breeds (Small-Tail Han sheep), with implications for the production of sheep in China.
In cattle, the detection of very early endometrial responses is considered to be hampered by the presence of only a single embryo. Therefore, we have previously developed a model of multiple embryo transfer to circumvent this hindrance. In this work, we analysed embryo–maternal interactions in the bovine uterus on day 8 of development while comparing the presence of multiple v. single embryos using embryo transfer and artificial insemination, respectively. Concentration of proteins (β-actin, NFkB, clusterin and immunoproteosome 20S β5i subunit–i20S), by western blot, and hexoses (glucose and fructose) were measured in paired samples of uterine fluid (UF) from the same animal with and without embryos in the uterus and were compared with UF obtained after artificial insemination. Prostaglandin (PG) F2α and PGE2 concentrations were also analysed in blood plasma. The four proteins analysed and hexoses were unaffected by the presence of one or more embryos in the uterus. However, blood PGF2α showed similar, significant increases with one or more embryos over cyclic animals; such changes were not observed in blood PGE2. Although multiple embryo transfer may appear to be non-physiological, we showed that the uterus, at the very early embryonic stages, does exhibit physiological reactions. Multiple embryo transfer can, therefore, be used for studies of very early embryo–maternal interactions in vivo in monotocous species.
Breeding programmes for livestock require economic weights for traits that reflect the most profitable animal in a given production system, which affect the response in each trait after selection. The profitability of sheep production systems is affected by changes in pasture growth as well as grain, meat and wool prices between seasons and across years. Annual pasture growth varies between regions within Australia’s Mediterranean climate zone from low growth with long periods of drought to high growth with shorter periods of drought. Therefore, the objective of this study was to assess whether breeding objectives need to be adapted for regions, depending on how reliable the pasture growth is across years. We modelled farms with Merino sheep bred for wool and meat in 10 regions in Western Australia. Across these 10 regions, mean annual pasture growth decreased, and the CV of annual pasture growth increased as pasture growth for regions became less reliable. We calculated economic values for nine traits, optimising management across 11 years, including variation for pasture growth and wool, meat and grain prices between and within years from 2002 to 2012. These economic values were used to calculate responses to selection for each trait for the 10 regions. We identified two potential breeding objectives, one for regions with low or high reliability and the other for regions with medium reliability of pasture growth. Breeding objectives for high or low pasture growth reliability had more emphasis on live weight traits and number of lambs weaned. Breeding objectives for medium reliability of pasture growth had more emphasis on decreasing fibre diameter. Relative economic weights for fleece weight did not change across the regions. Regions with low or high pasture reliability had similar breeding objectives and response to selection, because the relationship between the economic values and CV of pasture growth were not linear for live weight traits and the number of lambs weaned. This non-linearity was caused by differences in distribution of pasture growth between regions, particularly during summer and autumn, when ewes were pregnant, with increases in energy requirements affecting the value of lambs weaned. In addition, increasing live weight increased the intake capacity of sheep, which meant that more poor quality pasture could be consumed during summer and autumn, which had more value in regions with low and high pasture reliability. We concluded that breeding values for sheep production systems should be customised depending on the reliability of pasture growth between years.
The objective of this work was to study the postmortem evolution of potential biomarkers of autophagy (Beclin 1, LC3-II/LC3-I ratio) and oxidative stress (total antioxidant activity, TAA; superoxide dismutase activity, SOD and catalase activity, CAT) in the Longissimus dorsi muscle of entire male ((Large White×Landrace)×Duroc) pigs subjected to different management treatments that may promote stress, such as mixing unfamiliar animals at the farm and/or during transport and lairage before slaughter. During the rearing period at the farm, five animals were never mixed after the initial formation of the experimental groups (unmixed group at the farm, UF), whereas 10 animals were subjected to a common routine of being mixed with unfamiliar animals (mixed group at the farm, MF). Furthermore, two different treatments were used during the transport and lairage before slaughter: 10 pigs were not mixed (unmixed group during transport and lairage, UTL), whereas five pigs were mixed with unfamiliar animals on the lorry and during lairage (mixed group during transport and lairage, MTL). These mixing treatments were then combined into three pre-slaughter treatments – namely, UF-UTL, MF-UTL and MF-MTL. The results show that MF-UTL and MF-MTL increased significantly the muscle antioxidant defense (TAA, SOD and CAT) at short postmortem times (4 and 8 h; P<0.001), followed by an earlier depletion of the antioxidant activity at 24 h postmortem (P<0.05). We also found that mixing unfamiliar animals, both at the farm and during transport and lairage, triggers postmortem muscle autophagy, which showed an earlier activation (higher expression of Beclin 1 and LC3-II/LC3-I ratio at 4 h postmortem followed by a decreasing pattern of this ratio along first 24 h postmortem) in the muscle tissues of animals from the MF-UTL and MF-MTL groups, as an adaptive strategy of the muscle cells for counteracting induced stress. From these results, we propose that monitoring the evolution of the main biomarkers of autophagy (Beclin 1, LC3-II/LC3-I ratio) and muscle antioxidant defense (TAA, SOD, CAT) in the muscle tissue within the first 24 h postmortem may help the detection of animal stress and its potential effect on the postmortem muscle metabolism.
The objective of the present study was to estimate heritabilities as well as genetic and phenotypic correlations for egg weight, specific gravity, shape index, shell ratio, egg shell strength, egg length, egg width and shell weight in Japanese quail eggs. External egg quality traits were measured on 5864 eggs of 934 female quails from a dam line selected for two generations. Within the Bayesian framework, using Gibbs Sampling algorithm, a multivariate animal model was applied to estimate heritabilities and genetic correlations for external egg quality traits. The heritability estimates for external egg quality traits were moderate to high and ranged from 0.29 to 0.81. The heritability estimates for egg and shell weight of 0.81 and 0.76 were fairly high. The genetic and phenotypic correlations between egg shell strength with specific gravity, shell ratio and shell weight ranging from 0.55 to 0.79 were relatively high. It can be concluded that it is possible to determine egg shell quality using the egg specific gravity values utilizing its high heritability and fairly high positive correlation with most of the egg shell quality traits. As a result, egg specific gravity may be the choice of selection criterion rather than other external egg traits for genetic improvement of egg shell quality in Japanese quails.
The aim of this study was to evaluate the carcass and meat characteristics of eight muscles from bulls with distinct growth paths. A total of 40 Alentejana male calves were allocated to two distinct feeding regimes. In the continuous growth (CG) system, the animals were fed concentrates plus hay and were slaughtered at 18 months of age. On the other hand, in the discontinuous growth (DG) system, the animals were fed hay until 15 months of age; the cattle were then fed the same diet provided to the CG group from 15 to 24 months of age. The DG reduced hot carcass weight, fatness and dressing %, but the proportions of fat, bone and muscle tissues in the leg were not affected. In contrast, there was a positive impact of compensatory growth on supraspinatus, triceps brachii, semitendinosus, biceps femoris muscle tenderness, overcoming the negative effects of age at slaughter. The reasons for such improvement in meat tenderness were not related to intra-muscular fat content or myofibrillar protein degradation values. An association between tenderness and muscle collagen properties was not established. The results indicate that the compensatory growth has a muscle-dependent effect.
The aims of this study were to estimate the genetic variation of traditional milk coagulation properties (MCPs), milk acidity, curd firmness (CF) modeled on time t (CFt; comprising: RCTeq, rennet coagulation time estimated from the equation; CFP, the asymptotic potential curd firmness; kCF, the curd firming instant rate constant; and kSR, the syneresis instant rate constant) and maximum CF traits (MCF; comprising CFmax, the maximum CF value; and tmax, the time of attainment). Furthermore, we investigated 96 single nucleotide polymorphisms (SNPs) from 54 candidate genes, testing their associations with the above-listed traits. Milk and blood samples were collected from 1271 cows (each sampled once) from 85 herds. Genotyping was performed using a custom Illumina VeraCode GoldenGate approach. A Bayesian linear animal model (including the effects of herd, days in milk, parity and additive polygenic effects) was used to estimate the genetic parameters of the studied traits. The same model with the addition of the SNP genotype effect was used for our association analysis. The heritability estimates of CFt and the MCF traits (RCTeq=0.258; kCF=0.230; CFmax=0.191; tmax=0.278) were similar to those obtained using traditional MCPs (0.187 to 0.267), except for the lower estimates for CFP (0.064) and kSR (0.077). A total of 13 of the 51 tested SNPs had relevant additive effects on at least one trait. We observed associations between MCPs and SNPs in the genes encoding ATP-binding cassette sub-family G member 2 (ABCG2), chemokine ligand 2 (CCL2), growth hormone 1 (GH1), prolactin (PRL) and toll-like receptor 2 (TLR2). Whereas, CFt and the MCF traits were associated with polymorphisms in the α-s1-casein (CSN1S1), β-casein (CSN2), GH1, oxidized low-density lipoprotein receptor 1 (OLR1), phospholipase C β1 (PLCB1), PRL and signal transducer and activator of transcription 5A (STAT5A) genes.
The aim of this research was to determine the influence of dietary replacement of n-6 with n-3 polyunsaturated fatty acids on cellular immunity and oxidative stress in the transition period dairy cows. The experiment was conducted on 20 dairy Holstein cows from 3±1 weeks before parturition until the 6th week of lactation. Both groups were fed an iso-energetic and iso-nitrogenous diet. Soybean meal from control (C) group was replaced with linseed in the experimental (LS) group. Cellular immunity and oxidative stress were measured on days −10, 1, 21 and 42 relative to parturition. During the entire experimental period, the proportion of CD45+ cells was lower (P<0.05) in LS group compared with the C group. The phagocytosis ability and phagocytosis index of cows fed with n-3 fatty acids were significantly reduced (P<0.05) compared with the group of cows fed with n-6 fatty acids. The most severe decrease in phagocytosis ability was on day −10 and 1 relative to parturition. The activity of superoxide dismutase (P<0.05) and plasma glutathione peroxidase (P<0.05) increased around calving, although activities were not influenced by dietary treatment. Increased malondialdehyde concentration (P<0.05) was influenced by dietary n-3 fatty acids and the time relative to parturition. The immune suppression was most pronounced during periparturient period. In that matter we can conclude that not only dietary n-3 fatty acids but also oxidative stress, which reached peak at time of parturition, contributed to the reduced cellular immunity during the periparturient period.