We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Re-esterified oils are new fat sources obtained from the chemical esterification of acid oils with glycerol (both economically interesting by-products from oil refining and biodiesel industries, respectively). The different fatty acid (FA) positional distribution and acylglycerol composition of re-esterified oils may enhance the apparent absorption of saturated fatty acids (SFA) and, therefore, their overall nutritive value, which might lead to an increased deposition of SFA. The aim of the present study was to investigate the potential use of re-esterified palm oils, in comparison with their corresponding acid and native oils in fattening pig diets, studying their effects on fatty acid apparent absorption, acylglycerol and free fatty acid (FFA) composition of feces, growth performance, carcass-fat depots and fatty acid composition of backfat. Seventy-two crossbred boars and gilts (average weight of 24.7±2.55 kg) were blocked by initial BW (nine blocks of BW for each gender), housed in adjacent individual boxes, and fed one of the four dietary treatments, which were the result of a basal diet supplemented with 4% (as-fed basis) of native palm oil (PN), acid palm oil (PA), re-esterified palm oil low in mono- and diacylglycerols (PEL), or re-esterified palm oil high in mono- and diacylglycerols (PEH). Regarding results from the digestibility balance, PA and PN showed similar apparent absorption coefficients (P>0.05), despite the high, FFA content of the former. However, re-esterified palm oils (both PEL and PEH) showed a higher apparent absorption of total FA than did their corresponding native and acid oils (P<0.001), mainly due to the increased apparent absorption of SFA (P<0.001). This resulted in a greater feed efficiency and an increased deposition of SFA in backfat of pigs fed PEH, when compared with those fed PA (P<0.05), although no differences were found for carcass-fat depots (P>0.05). We conclude that re-esterified oils are interesting fat sources to be considered in fattening pigs.
Death of calves around parturition is a matter of concern for dairy farmers. Relatively high stillbirth rates and unfavourable trends have been reported for Holstein heifers in the Netherlands and several other countries. In our study, we investigated herd differences, genetic parameters and genotype by environment interaction for heifer calf livability. A large dataset with data from calvings between 1993 and 2012 of Dutch dairy farms was used. There were considerable differences between herds in livability of calves from heifers, with averages ranging from 74% to 95%. Both herds with relatively high and low averages showed the same negative trend between 1993 and 2012, with largest declines in herds with the lowest averages. We found that heritability and genetic variation of first parity livability were substantially larger in herd environments where the likelihood of stillbirth was high v. environments where stillbirth was at a low level. The genetic correlations between herd environment levels were all very close to unity, indicating that ranking of sires was similar for all environments. However, for herds with a relatively high stillbirth incidence selecting sires with favourable breeding values is expected to be twice as profitable as in herds with a relatively low stillbirth incidence.
The effects of early life events on average daily weight gain from birth to day 21 (ADG) of suckling pigs kept at different room temperatures (15°C, 20°C and 25°C) from birth to weaning were investigated. Data were collected from litters born by 61 sows in a loose housing system. The ADG for piglets with low birth weight (estimated for birth weights below the 10% percentile) was estimated to be 20 to 30 g higher per day at room temperature 20°C to 25°C compared with 15°C. In contrast, the ADG during the lactation period decreased for larger piglets (estimated for birth weights above the 10% percentile) by 28 g/day at room temperature 25°C compared with 15°C. Thus, high ambient temperatures (20°C to 25°C) are favourable for the growth in smaller piglets during lactation. Neither latency to first suckle nor birth-induced hypoxia, measured as concentration of umbilical cord lactate, affected the growth rate of the piglets. Lowest rectal temperature during the first 24 h after birth had a long-term negative effect on ADG (P<0.05), so that piglets with a lowest rectal temperature of 32.8°C (10% percentile) had an ADG which was on average 19 g lower per day than piglets with a rectal temperature of 37.3°C (90% percentile). Our results showed that hypothermia at birth, low birth weight and high number of suckling piglets lead to reduced ADG during the suckling period. The results suggest that keeping the room temperature at 20°C during lactation to some extent could compensate for the otherwise negative effects of low birth weight on ADG in piglets without decreasing the ADG of high birth weight piglets. However, to avoid hypothermia in the smallest piglets it may be beneficial to increase the room temperature above 20°C during the farrowing period of loose housed sows.
BW of replacement heifers is rarely measured on commercial farms, making it difficult to evaluate the success of management practices related to calf growth. Our aims were to describe variability among commercial farms in Holstein heifer BW, determine how BW differences varied with management and propose a method of estimating calf growth based upon single measurement. Heart girth circumference was used to estimate BW of 576 heifers 48 to 70 weeks of age on 33 different farms (on average 11±6 heifers/farm) in British Columbia, Canada. Regression analysis showed a linear relationship of BW with age (BW (kg)=116+5×age (weeks)). Residuals from this regression were averaged across heifers within each farm to identify farms where heifers were heavier or lighter than would be predicted on the basis of their age; farm average residuals ranged from −54 to 72 kg. Farms with heifers showing the highest residual BW also had the highest rates of gain for pre-weaned calves. These results indicate that farms able to rear faster growing calves before weaning were also rearing faster growing heifers at breeding, and suggest that management of milk-fed calves is a particularly important component of replacement heifer management.
Selection of animals for improved feed efficiency can affect sustainability of animal production because the most efficient animals may face difficulties coping with challenges. The objective of this study was to determine the effects of an inflammatory challenge (using an intravenous injection of complete Freund’s adjuvant – CFA) in piglets from two lines of pigs divergently selected during the fattening period for a low (RFI−) or a high (RFI+) residual feed intake (RFI; difference between actual feed intake and theoretical feed requirements). Nitrogen and energy balances (including heat production – HP – and its components: activity-related HP – AHP, thermic effect of feeding, and resting HP) were measured individually in thirteen 20-kg BW castrated male piglets (six and seven from RFI+ and RFI− line, respectively) fed at the same level (1.72 MJ ME/kg BW0.60 per day) from 3 days before to 3 days after CFA injection. Dynamics of dietary U-13C-glucose oxidation were estimated from measurements of 13CO2 production on the day before and 3 days after the CFA injection. Oxidation of dietary nutrients and lipogenesis were calculated based on HP and O2 consumption and CO2 production. The data were analyzed as repeated measurements within piglets in a mixed model. Before CFA injection, RFI− piglets had a lower resting energy expenditure than RFI+ piglets, which tended to increase energy retention because of a higher energy retention as fat. The CFA injection did not affect feed intake from the day following CFA injection onwards but it increased energy retention (P=0.04). Time to recover 50% of 13C from dietary glucose as expired 13CO2 was higher in RFI+ piglets before inducing inflammation but decreased after to the level of RFI− piglets (P<0.01). Oxidation of U-13C-glucose tended to slightly increased in RFI− piglets and to decreased in RFI+ piglets (P=0.10) because of CFA. Additionally, RFI− piglets had a lower respiratory quotient during the 1st day following the CFA injection whereas RFI+ piglets tended to have a higher respiratory quotient. In conclusion, selection for RFI during the fattening period also affected the energy metabolism of pigs during earlier stages of growth. The effects of CFA injection were moderated in both lines but the most efficient animals (RFI−) exhibited a marked re-orientation of nutrients only during the 1st day after CFA, and seemed to recover thereafter, whereas the less efficient piglets expressed a more prolonged alteration of their metabolism.
Measuring and mitigating methane (CH4) emissions from livestock is of increasing importance for the environment and for policy making. Potentially, the most sustainable way of reducing enteric CH4 emission from ruminants is through the estimation of genomic breeding values to facilitate genetic selection. There is potential for adopting genetic selection and in the future genomic selection, for reduced CH4 emissions from ruminants. From this review it has been observed that both CH4 emissions and production (g/day) are a heritable and repeatable trait. CH4 emissions are strongly related to feed intake both in the short term (minutes to several hours) and over the medium term (days). When measured over the medium term, CH4 yield (MY, g CH4/kg dry matter intake) is a heritable and repeatable trait albeit with less genetic variation than for CH4 emissions. CH4 emissions of individual animals are moderately repeatable across diets, and across feeding levels, when measured in respiration chambers. Repeatability is lower when short term measurements are used, possibly due to variation in time and amount of feed ingested prior to the measurement. However, while repeated measurements add value; it is preferable the measures be separated by at least 3 to 14 days. This temporal separation of measurements needs to be investigated further. Given the above issue can be resolved, short term (over minutes to hours) measurements of CH4 emissions show promise, especially on systems where animals are fed ad libitum and frequency of meals is high. However, we believe that for short-term measurements to be useful for genetic evaluation, a number (between 3 and 20) of measurements will be required over an extended period of time (weeks to months). There are opportunities for using short-term measurements in standardised feeding situations such as breath ‘sniffers’ attached to milking parlours or total mixed ration feeding bins, to measure CH4. Genomic selection has the potential to reduce both CH4 emissions and MY, but measurements on thousands of individuals will be required. This includes the need for combined resources across countries in an international effort, emphasising the need to acknowledge the impact of animal and production systems on measurement of the CH4 trait during design of experiments.
The aim of this study was to determine the genetic background of longitudinal residual feed intake (RFI) and BW gain in farmed mink using random regression methods considering heterogeneous residual variances. The individual BW was measured every 3 weeks from 63 to 210 days of age for 2139 male+female pairs of juvenile mink during the growing-furring period. Cumulative feed intake was calculated six times with 3-week intervals based on daily feed consumption between weighing’s from 105 to 210 days of age. Genetic parameters for RFI and BW gain in males and females were obtained using univariate random regression with Legendre polynomials containing an animal genetic effect and permanent environmental effect of litter along with heterogeneous residual variances. Heritability estimates for RFI increased with age from 0.18 (0.03, posterior standard deviation (PSD)) at 105 days of age to 0.49 (0.03, PSD) and 0.46 (0.03, PSD) at 210 days of age in male and female mink, respectively. The heritability estimates for BW gain increased with age and had moderate to high range for males (0.33 (0.02, PSD) to 0.84 (0.02, PSD)) and females (0.35 (0.03, PSD) to 0.85 (0.02, PSD)). RFI estimates during the growing period (105 to 126 days of age) showed high positive genetic correlations with the pelting RFI (210 days of age) in male (0.86 to 0.97) and female (0.92 to 0.98). However, phenotypic correlations were lower from 0.47 to 0.76 in males and 0.61 to 0.75 in females. Furthermore, BW records in the growing period (63 to 126 days of age) had moderate (male: 0.39, female: 0.53) to high (male: 0.87, female: 0.94) genetic correlations with pelting BW (210 days of age). The result of current study showed that RFI and BW in mink are highly heritable, especially at the late furring period, suggesting potential for large genetic gains for these traits. The genetic correlations suggested that substantial genetic gain can be obtained by only considering the RFI estimate and BW at pelting, however, lower genetic correlations than unity indicate that extra genetic gain can be obtained by including estimates of these traits during the growing period. This study suggests random regression methods are suitable for analysing feed efficiency and BW gain; and genetic selection for RFI in mink is promising.
The objectives of this study were to determine: (1) the effect of wheat dried distillers grain with solubles (DDGS) inclusion, and (2) dietary feed enzyme (FE; Econase XT) supplementation in a finishing diet containing wheat DDGS on fatty acid profile of the pars costalis diaphragmatis muscle of beef cattle. A total of 160 crossbred yearling steers with initial BW of 495±38 kg were blocked by BW and randomized into 16 pens (10 head/pen). The pens were randomly assigned to one of the four treatments: (1) control (CON; 10% barley silage and 90% barley grain-based concentrate, dry matter (DM) basis); (2) diet containing 30% wheat DDGS in place of barley grain without FE (WDG); (3) WDG diet supplemented with low FE (WDGL; 1 ml FE/kg DM); and (4) WDG diet supplemented with high FE (2 ml FE/kg DM). The pars costalis diaphragmatis muscle samples were collected from cattle at slaughter at the end of the finishing period (120 days) with a targeted live weight of 650 kg. No differences in organic matter intake, final BW and average daily gain were observed among treatments. However, steers fed WDG had greater (P<0.01) feed conversion ratio than those fed CON, and increasing FE application in wheat DDGS-based diets tended (P<0.10) to linearly decrease feed conversion ratio. In assessing the effects of including WDG diets without FE, concentration of total polyunsaturated fatty acids (PUFA) in muscle tended to be greater (P<0.10) for steers fed WDG than steers fed CON. In addition, inclusion of wheat DDGS into the diet increased (P<0.05) concentration of CLA and vaccenic acid (VA) in muscle and also resulted in a higher (P<0.05) ratio of n-6/n-3 PUFA compared with that from steers fed CON diet. Increasing FE application in wheat DDGS-based diets did not modify the concentrations of individual or total fatty acids. These results suggest that inclusion of wheat DDGS in finishing diets may improve fatty acid profile of beef muscle which could benefit human health.
Lameness in dairy herds is traditionally detected by visual inspection, which is time-consuming and subjective. Compared with healthy cows, lame cows often spend longer time lying down, walk less and change behaviour around feeding time. Accelerometers measuring cow leg activity may assist farmers in detecting lame cows. On four commercial farms, accelerometer data were derived from hind leg-mounted accelerometers on 348 Holstein cows, 53 of them during two lactations. The cows were milked twice daily and had no access to pasture. During a lactation, locomotion score (LS) was assessed on average 2.4 times (s.d. 1.3). Based on daily lying duration, standing duration, walking duration, total number of steps, step frequency, motion index (MI, i.e. total acceleration) for lying, standing and walking, eight accelerometer means and their corresponding coefficient of variation (CV) were calculated for each week immediately before an LS. A principal component analysis was performed to evaluate the relationship between the variables. The effects of LS and farm on the principal components (PC) and on the variables were analysed in a mixed model. The first four PC accounted for 27%, 18%, 12% and 10% of the total variation, respectively. PC1 corresponded to Activity variability due to heavy loading by five CV variables related to standing and walking. PC2 corresponded to Activity level due to heavy loading by MI walking, MI standing and walking duration. PC3 corresponded to Recumbency due to heavy loading by four variables related to lying. PC4 corresponded mainly to Stepping due to heavy loading by step frequency. Activity variability at LS4 was significantly higher than at the lower LS levels. Activity level was significantly higher at LS1 than at LS2, which was significantly higher than at LS4. Recumbency was unaffected by LS. Stepping at LS1 and LS2 was significantly higher than at LS3 and LS4. Activity level was significantly lower on farm 3 compared with farms 1 and 2. Stepping was significantly lower on farms 1 and 3 compared with farms 2 and 4. MI standing indicated increased restlessness while standing when cows increased from LS3 to LS4. Lying duration was only increased in lame cows. In conclusion, Activity level differed already between LS1 and LS2, thus detecting early signs of lameness, particularly through contributions from walking duration and MI walking. Lameness detection models including walking duration, MI walking and MI standing seem worthy of further investigation.
The in situ degradation of the washout fraction of starch in six feed ingredients (i.e. barley, faba beans, maize, oats, peas and wheat) was studied by using a modified in situ protocol and in vitro measurements. In comparison with the washing machine method, the modified protocol comprises a milder rinsing method to reduce particulate loss during rinsing. The modified method markedly reduced the average washout fraction of starch in these products from 0.333 to 0.042 g/g. Applying the modified rinsing method, the fractional degradation rate (kd) of starch in barley, oats and wheat decreased from on average 0.327 to 0.144 h−1 whereas for faba beans, peas and maize no differences in kd were observed compared with the traditional washing machine rinsing. For barley, maize and wheat, the difference in non-fermented starch in the residue between both rinsing methods during the first 4 h of incubation increased, which indicates secondary particle loss. The average effective degradation of starch decreased from 0.761 to 0.572 g/g when using the new rinsing method and to 0.494 g/g when applying a correction for particulate matter loss during incubation. The in vitro kd of starch in the non-washout fraction did not differ from that in the total product. The calculated ratio between the kd of starch in the washout and non-washout fraction was on average 1.59 and varied between 0.96 for oats and 2.39 for maize. The fractional rate of gas production was significantly different between the total product and the non-washout fraction. For all products, except oats, this rate of gas production was larger for the total product compared with the non-washout fraction whereas for oats the opposite was observed. The rate of increase in gas production was, especially for grains, strongly correlated with the in vitro kd of starch. The results of the present study do not support the assumption used in several feed evaluation systems that the degradation of the washout fraction of starch in the rumen is much faster than that of the non-washout fraction.
Androstenone is a steroid pheromone occurring in the pubertal Leydig cells. Breeding against androstenone can decrease pheromone odour in swine meat but appears to cause unwanted side effects such as delayed onset of puberty. To study causality, global gene expression in developing boar testes at 12, 16, 20 and 27 weeks was investigated using a porcine cDNA microarray. The morphological status and androgenic levels of the same individuals have been described in a previous publication. In the present paper, expression of genes and pathways has been analysed with reference to these findings. Nine clusters of genes with significant differential expression over time and 49 functional charts were found in the analysed testis samples. Prominent pathways in the prepubertal testis were associated with tissue renewal, cell respiration and increased endocytocis. E-cadherines may be associated with the onset of pubertal development. With elevated steroidogenesis (weeks 16 to 27), there was an increase in the expression of genes in the MAPK pathway, STAR and its analogue STARD6. A pubertal shift in genes coding for cellular cholesterol transport was observed. Increased expression of meiotic pathways coincided with the morphological onset of puberty. Puberty-related change in Ca(2+) pathway transcripts, neurosteroids, neuronal changes and signalling in redox pathways suggested a developmental-specific period of neuromorphogenesis. Several growth factors were found to increase differentially over time as the testis matured. There may be interactions between MAPK, STAR and growth factors during specific periods. In conclusion, pathways for neurogenesis, morphological pathways and several transcripts for growth factors, which have known modulating effects on steroidogenesis and gonadotropins in humans and rodents, act at specific ages and developmental stages in the boar testis. The age dependency and complexity shown for development-specific testis transcripts must be considered when selecting phenotypic parameters for genetic selection for low androstenone. The results of selection based on measurement of phenotypic maturation and androstenone (or other steroid) levels at one specific age may differ depending on the age used. More research is necessary to find the optimal phenotype to use in order to reduce the unwanted side effects.
In vitro gas production studies are routinely used to assess the metabolic capacity of intestinal microbiota to ferment dietary fibre sources. The faecal inocula used during the in vitro gas production procedure are most often obtained from animals adapted to a certain diet. The present study was designed to assess whether 19 days of adaptation to a diet are sufficient for faecal inocula of pigs to reach a stable microbial composition and activity as determined by in vitro gas production. Eighteen multiparous sows were allotted to one of two treatments for three weeks: a diet high in fibre (H) or a diet low in fibre (L). After this 3-week period, the H group was transferred to the low fibre diet (HL-treatment) while the L group was transferred to the diet high in fibre (LH-treatment). Faecal samples were collected from each sow at 1, 4, 7, 10, 13, 16 and 19 days after the diet change and prepared as inoculum used for incubation with three contrasting fermentable substrates: oligofructose, soya pectin and cellulose. In addition, inocula were characterised using a phylogenetic microarray targeting the pig gastrointestinal tract microbiota. Time after diet change had an effect (P<0.05) on total gas production for the medium–fast fermentable substrates; soya pectin and oligofructose. For the more slowly fermentable cellulose, all measured fermentation parameters were consistently higher (P<0.05) for animals in the HL-treatment. Diet changes led to significant changes in relative abundance of specific bacteria, especially for members of the Bacteroidetes and Bacilli, which, respectively, increased or decreased for the LH-treatment, while changes were opposite for the HL-treatment. Changing the diet of sows led to changes in fermentation activity of the faecal microbiota and in composition of the microbiota over time. Adaptation of the microbiota as assessed by gas production occurred faster for LH-animals for fast fermentable substrates compared with HL-animals. Overall, adaptation of the large intestinal microbiota of sows as a result of ingestion of low and high fibre diets seems to take longer than 19 days, especially for the ability to ferment slowly fermentable substrates.
For dairy cattle on pasture in temperate regions, it is largely unknown to what degree hot summer conditions impact energy metabolism, milk yield and milk composition and how effective shade is in reducing these negative effects. During the summer of 2012, a herd of Holstein cows was kept on pasture without access to shade (treatment NS). During the summers of 2011 and 2013, the herd was divided into a group with (treatment S) and a group without (treatment NS) access to shade. Shade was provided by young trees combined with shade cloths (80% reduction in solar radiation). A weather station registered the local climatic conditions on open pasture, from which we calculated daily average Heat Load Index (HLI) values. The effects of HLI and shade on rectal temperature (RT), blood plasma indicators of hyperventilation and metabolic changes due to heat stress, milk yield and milk composition were investigated. RT increased with increasing HLI, but was less for S cows than for NS cows (by 0.02°C and 0.03°C increase per unit increase of HLI, respectively). Hyperchloraemia (an increased blood plasma concentration of Cl−), a sign of hyperventilation, increased for NS cows but not for S cows. The plasma concentration of alkaline phosphatase, a regulator of energy metabolism in the liver, decreased with increasing HLI for NS cows only. Access to shade, thus, reduced the effect of HLI on RT, hyperchloraemia and the regulation of metabolism by the liver. As HLI increased, the plasma concentration of cholesterol decreased (indicating increased lipolysis) and the plasma concentration of creatinine increased (indicating increased protein catabolism). These effects did not differ between S and NS cows. For NS cows, after a lag-time of 2 days, the milk yield decreased with increasing HLI. For S cows, the milk yield was unaffected by HLI and its quadratic factor. The milk concentrations of lactose, protein and fat decreased as HLI increased, but only the effect on milk protein content was remediated by shade. In conclusion, access to shade tempered the negative effects of high HLI on RT, hyperchloraemia and a blood plasma indicator of changing energy metabolism (generally) as well as prevented the decrease in milk yield observed in cows without access to shade.
The present study aimed to investigate the effect of supplemental genistein (an isoflavonoid) on performance, lymphoid organs’ development, and cellular and humoral immune responses in broiler chicks. A total of 675-day-old male broiler chicks (Ross 308) were randomly assigned to the five replicate pens (15 chicks each) of nine experimental diets. Dietary treatments included a negative (not-supplemented) control diet, two positive control groups (virginiamycin or zinc-bacitracin, 20 mg/kg), and diets containing 10, 20, 40, 80, 160 and 320 mg/kg of genistein. The cutaneous basophil hypersensivity (CBH) test was measured at day 10 of age after toe web injection with phytohemagglutinin-P. In addition, sera samples were collected after different antigen inoculations to investigate antibody responses. At day 28 of age, three randomly selected birds from each pen were euthanized to evaluate the relative weights of lymphoid organs. Results showed that dietary supplementation of both antibiotics increased (P<0.01) feed intake during 1 to 42 days of age. Furthermore, daily weight gain was influenced (P<0.01) by dietary treatments throughout the trial, so that the birds fed on antibiotics and 20 to 80 mg/kg genistein diets revealed the greater weight gains compared with other experimental groups. The best (P<0.05) feed conversion ratio assigned to the birds fed on diets containing antibiotics and moderate levels (40 to 80 mg/kg) of genistein. Although the relative weights of thymus (P<0.05) and bursa of Fabricius (P<0.01) were greater in birds fed on genistein-supplemented diets compared with antibiotics-supplemented birds, the spleen weight was not affected by experimental diets. Similarly, CBH response and antibody titers against Newcastle and infectious bronchitis disease viruses were markedly (P<0.05) greater in chicks fed on diets supplemented with 20 to 80 mg/kg of genistein. Interestingly, the higher dosages of genistein suppressed CBH and antibody responses to the levels seen by control and antibiotics chicks. Dietary inclusion of genistein increased (P<0.05) lymphocytes and subsequently reduced (P<0.01) heterophil to lymphocyte ratio. The present findings indicate that dietary genistein supplementation at the levels of 20 to 80 mg/kg not only improves growth performance, but also could beneficially affect immunological responses in broiler chicks.
Although dietary fiber (DF) negatively affects energy and nutrient digestibility, there is growing interest for the inclusion of its fermentable fraction in pig diets due to their functional properties and potential health benefits beyond supplying energy to the animals. This paper reviews some of the relevant information available on the role of different types of DF on digestion of nutrients in different sections of the gut, the fermentation process and its influence on gut environment, especially production and utilization of metabolites, microbial community and gut health of swine. Focus has been given on DF from feed ingredients (grains and coproducts) commonly used in pig diets. Some information on the role DF in purified form in comparison with DF in whole matrix of feed ingredients is also presented. First, composition and fractions of DF in different feed ingredients are briefly reviewed. Then, roles of different fractions of DF on digestion characteristics and physiological functions in the gastrointestinal tract (GIT) are presented. Specific roles of different fractions of DF on fermentation characteristics and their effects on production and utilization of metabolites in the GIT have been discussed. In addition, roles of DF fermentation on metabolic activity and microbial community in the intestine and their effects on intestinal health are reviewed and discussed. Evidence presented in this review indicates that there is wide variation in the composition and content of DF among feed ingredients, thereby their physico-chemical properties in the GIT of swine. These variations, in turn, affect the digestion and fermentation characteristics in the GIT of swine. Digestibility of DF from different feed ingredients is more variable and lower than that of other nutrients like starch, sugars, fat and CP. Soluble fractions of DF are fermented faster, produce higher amounts of volatile fatty acid than insoluble fractions, and favors growth of beneficial microbiota. Thus, selective inclusion of DF in diets can be used as a nutritional strategy to optimize the intestinal health of pigs, despite its lower digestibility and consequential negative effect on digestibility of other nutrients.
Using behavioural indicators of thermal discomfort, that is, shade seeking, panting scores (PS) and respiration rate (RR), we evaluated the effect of hot summer conditions and shade, for a herd of adult Holstein dairy cows and a herd of Belgian Blue beef cows kept on pasture in a temperate area (Belgium). During the summer of 2012, both herds were kept on pasture without access to shade (NS). During the summers of 2011 and 2013 each herd was divided into one group with (S) and one without (NS) access to shade. Shade was provided by young trees with shade cloth (80% reduction in solar radiation) hung between them. For S cows, we investigated how shade use was related to hot conditions as quantified by six climatic indices. The heat load index (HLI), which incorporates air temperature and humidity, solar radiation and wind speed, was the best predictor of the six indices tested. In 2011, there was a relatively high threshold for use of shade. When HLI=90, shade use probability reached 17% for dairy cows and 27% for beef cows. In 2013, however, at HLI=90, shade use probability reached 48% for dairy cows and 41% for beef cows. For animals from the NS treatment we determined the effect of hot summer conditions on RR and PS (with 0=no panting and 4.5=extreme panting). In both types of cattle, an increase in black globe temperature was the best predictor for increasing RR and PS. Furthermore, we determined how the effect of hot summer conditions on RR and PS was affected by the use of shade. Under hot conditions (black globe temperature ⩾30°C), >50% of the animals under shade retained normal PS and RR (PS<1 and RR<90 breaths per minute), whereas normal RR and PS were significantly less prevalent for animals outside shade. Our findings suggest that, even in temperate summers, heat can induce thermal discomfort in cattle, as evidenced by increases in shade use, RR and PS, and that shade increases thermal comfort.
Alternatives to farrowing crates with continuous confinement of the sow are urgently needed because the animal welfare is negatively impacted. Given the increase of herd sizes, practical experience with loose-housing is needed to force the implementation of these systems in the field. Next to aspects of labour efficiency, detrimental piglet mortality rates that may occur during the first days postpartum (pp) is a major criticism. Therefore, loose-housing after a crating period limited to the first days pp might be a feasible alternative to improve welfare under intensive production conditions. The aim was to investigate the effect of crating sows during lactation for different periods on their behaviour and integument alterations and on piglets’ performance. Gilts from a commercial herd were observed from 5 to 26 days pp and housed in farrowing crates (1.85×2.50 m) that could be altered between confinement crates and loose-housing pens. Animals were divided into three groups, that were either crated continuously from birth until weaning (Group A, n=55), until 14 days pp (Group B; n=54) or 7 days pp (Group C, n=59). The behaviour of six randomly selected gilts per group was video recorded from 5 to 26 days pp and analysed by time sampling technique. Lesions on the legs, shoulder and lumbar vertebra were scored on days 7, 14 and 25 pp. Piglets were weighed weekly, causes of losses recorded and weight losses of gilts measured. Not different between groups (P>0.05), animals spent 72 to 76% lying laterally, 14 to 17% lying in abdominal or semi-abdominal position, 9 to 10% standing and 1 to 3% sitting. B-sows were lying longer in week 3 and 4 of lactation compared to A- and C-sows (P<0.05). The incidence of slight shoulder lesions rose from <1% on day 7 to 4% on day 14 and 14% on day 25 pp. On day 25 pp, 5% of all studied gilts showed moderate shoulder lesions. Piglet mortality rates were 11.4%, 12.9% and 13.3% for groups A, B and C, respectively (P>0.05), whereas almost 90% of the losses occurred in the first week pp. In conclusion, loose-housing of lactating gilts after a reduced postnatal crating period of 7 days affected neither the activity level of the gilts and lesions on the integument nor pre-weaning mortality. Therefore, it is recommended to allow sows to move around to some extent during the later lactation period.
The effect of shade on behavior and physiological attributes of grazing cows in a high altitude subtropical zone is not well established. This work aimed to investigate how social and ingestive behaviors, as well as physiological and other attributes of dairy cows such as milk production, change in a subtropical environment during the hot season either with or without free access to shade. Fourteen lactating cows were kept on pasture either with no shade or with free access to shade for 5 days and their behavior was recorded with instantaneous scan sampled every 10 min, from sunrise, 0530 h (Greenwich mean time, GMT−0200 h) to sunset, 2100 h (GMT−0200 h). Behavior traits included (1) time spent in activities such as grazing, ruminating, resting, lying, standing, walking, seeking shade and staying in the proximity to the water trough and (2) number of events such as water ingestion, aggressive interactions, as well as competition for shade and water. Physiological attributes such as heart and respiratory rates, rectal temperature, number of rumen movements, panting score, as well as milk yield, were evaluated. Time spent in behavioral activities, number of behavioral events and physiological attributes varied between groups (with and without access to shade). Cows with no shade showed increased respiratory and heart rates and panting score at 1300 h, higher values for time of permanence near the water trough, number of competition and aggression events for shade. On the other hand, they showed lower values for time spent resting while lying, ruminating while standing, seeking shade. Access to shade did not change time spent lying, standing, walking with the head up, ruminating while lying, resting while standing, as well as milk yield and number of ruminal movements. Significant interactions between access to shade and days of measurements were detected for time spent walking, ruminating, grazing, resting, number of water ingestion events, competition events near the water trough and for shade, as well as for rectal temperature and panting score measured at 1700 h. In the high altitude subtropical region, access to shade minimizes negative heat stress effects on behavior and physiological aspects of dairy cows.