The effective degradability (Dg) of dry matter (DM), nitrogen (N) and amino acids (AA) in soya-bean meal (SBM), fish meal (FM), dried brewers' grains (DBG) and ensiled lucerne (EL) was measured using polyester bags suspended in the rumens of six cows given a basal diet of maize silage, hay and concentrate. Rumen outflow rate was measured using chromium-mordanted SBM.
AA were grouped into essential (EAA), non-essential (NEAA) or branched chain (BrAA). The AA concentration in DM varied from 88 g/kg DM for EL to 566 g/kg for FM. The proportion of determined AA in crude protein (CP) was similar for SBM, FM and DBG and always higher than 0·85. EL had the lowest A A concentration in CP, partly due to the presence of ammonia N (170 g/kg total N).
Methionine always had a higher, and threonine a lower Dg than total AA in all foods. Dg of other AA was generally food dependent.
SBM always had the highest EAA, BrAA, NEAA, mean AA and total N degradability, whilst FM always had the lowest Dg for EAA, BrAA, mean AA and total N, and these values were significantly different in comparison with SBM. The effective Dg of BrAA in DBG was significantly lower than in SBM and significantly higher than in FM. In EL, NEAA and mean AA Dg were significantly lower compared with SBM.
Effective Dg of total AA in SBM and EL was significantly lower than the CP Dg; this difference was not apparent in DBG or FM.
The undegraded fraction of FM and EL had a significantly higher proportion of EAA whilst DBG and EL had a higher proportion of BrAA when compared with the unexposed food. Isoleucine concentration, highest in EL, and lysine and methionine contents, highest in FM, differed significantly between the four protein source residues.
The first limiting AA after rumen incubation, in relation to casein and meat, was always methionine. The essential amino acid index of the food residues post incubation, relative to casein and meat, was lower in SBM, DBG and EL but higher in FM.