This chapter begins with a brief outline of some of the key motivations for considering a quantum theory: the early attempts to determine the spectral distribution of energy density of black bodies; stability of atoms and molecules; specific heats of solids; interference and diffraction of light beams; polarization of photons. The experimental foundations of wave mechanics are then presented in detail, but in a logical order quite different from its historical development: photo-emission of electrons by metallic surfaces, X- and γ-ray scattering from gases, liquids and solids, interference experiments, atomic spectra and the Bohr hypotheses, the experiment of Franck and Hertz, the Bragg experiment, diffraction of electrons by a crystal of nickel (Davisson and Germer), and measurements of position and velocity of an electron.
The need for a quantum theory
In the second half of the nineteenth century it seemed that the laws of classical mechanics, developed by the genius of Newton, Lagrange, Hamilton, Jacobi and Poincaré, the Maxwell theory of electromagnetic phenomena and the laws of classical statistical mechanics could account for all known physical phenomena. Still, it became gradually clear, after several decades of experimental and theoretical work, that one has to formulate a new kind of mechanics, which reduces to classical mechanics in a suitable limit, and makes it possible to obtain a consistent description of phenomena that cannot be understood within the classical framework. It is now appropriate to present a brief outline of this new class of phenomena, the systematic investigation of which is the object of the following sections and of chapters 4 and 14.