We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Quantum Models of Cognition and Decision, Second Edition presents a fully updated and expanded version of this innovative and path-breaking text. It offers an accessible introduction to the intersection of quantum theory and cognitive science, covering new insights, modelling techniques, and applications for understanding human cognition and decision making. In it, Busemeyer and Bruza delve into such topics as the non-commutative nature of judgments, quantum interference as a general principle governing human decision making, contextuality in modelling human cognition, and thought-provoking speculation about what a quantum approach to cognition might reveal about the ultimate nature of the human mind. Additions include new material on measurement, open systems, and applications to computer science. Requiring no prior background in quantum physics, this book comes complete with a tutorial and fully worked-out applications in important areas of cognition and decision.
The famously controversial 1935 paper by Einstein, Podolsky, and Rosen (EPR) took aim at the heart of the flourishing field of quantum mechanics. The paper provoked responses from the leading theoretical physicists of the day, and brought entanglement and nonlocality to the forefront of discussion. This book looks back at the seminal year in which the EPR paper was published and explores the intense debate it unleashed. These conversations in print and in private correspondence offer significant insight into the minds of pioneering quantum physicists including Niels Bohr, Erwin Schrödinger and Albert Einstein himself. Offering the most complete collection of sources to date – many published or translated here for the first time – this text brings a rich new context to this pivotal moment in physics history. Both researchers and students in the history and philosophy of science, and enthusiasts alike, will find this book illuminating.
This book deals with the discovery and explanation of the quantum Hall effect and its fundamental principles. It is meant for undergraduate and graduate students of physics, engineering, and applied sciences studying condensed matter physics. Doctoral students and researchers of this subject will also find it equally useful. It begins with a historical overview of this effect wherein the experiment and the physical systems are described. It progresses to cover discrete symmetries like inversion symmetry, time reversal symmetry, particle-hole symmetry, and chiral symmetry. It also examines how the Hamiltonian transforms under such symmetry operations. Two 1D models, namely the Su-Schrieffer-Heeger (SSH) model and a Kitaev chain with superconducting correlations, are discussed too. Then, the quantum Hall effect in graphene is explained. Further, the spin Hall effect is studied which may have prospects of using graphene as spintronic devices. The book ends with a brief review on fractional quantum Hall effect.
This chapter delves into the application of trapped ions in electromagnetic fields for quantum computing, starting with the technique of confining ions using a linear Paul trap. It then examines the encoding of qubits within the ions’ electronic states. The interaction between an ion and a laser, pivotal for system operations, is analyzed next. This interaction underpins the initialization of ions via laser cooling and the execution of one- and two-qubit gates. The two-qubit gates also employ the ions’ motional states to extend beyond the traditional qubit space. The process also includes a method for measuring qubit states by detecting the photons released when ions are excited. The text identifies key sources of noise that can affect ion traps. It concludes with a summary and the advantages and challenges associated with trapped-ion quantum computing.
This chapter examines the use of photon ensembles for quantum computing. It opens with a primer on photons, normal modes, and both linear and nonlinear optics. The discussion then advances to the technologies employed in generating and detecting single photons, followed by methods of qubit encoding and initialization. Subsequently, the focus shifts to qubit control, detailing the execution of single-qubit gates using linear optical elements and the Knill–Laflamme–Milburn (KLM) protocol for two-qubit gates. While the textbook predominantly centers on the circuit model, alternative models of quantum computing – specifically, one-way quantum computing and continuous-variable quantum computing – and their optical implementations are introduced. Additionally, it outlines the primary sources of noise affecting these systems. The chapter wraps up with a reflection on the comparative benefits and limitations of optical quantum computing.
This chapter delves into superconducting qubits, starting with the essentials of superconductivity and circuit design. Central to this discussion is the Josephson junction, a key element in creating superconducting qubits. The text focuses on the transmon, the archetype in this field, while acknowledging other designs. Initialization of the transmon involves sophisticated dilution refrigerators, a process that is also examined. Additionally, the principles of circuit quantum electrodynamics (QED) are introduced as the framework for qubit control and measurement. Attention is then given to noise sources and their effect on superconducting qubits, with insights that apply to various qubit systems. The chapter wraps up by highlighting the strengths and challenges of superconducting qubits for quantum computing.