We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Practical plasmas are typically contained in a vacuum chamber of finite size. When ions and electrons hit the walls, they recombine and are lost. Since electrons have much higher thermal velocities than the ions, one may at first expect that they would be lost faster, leaving the otherwise neutral plasma with a net positive charge. However, because of this tendency, the plasma develops a positive potential with respect to the wall, which prevents most of the electrons from reaching the wall. In equilibrium, a potential gradient arises near the wall so that most of the electrons are reflected back into the plasma, with the number reaching the wall being equal to the corresponding number of positive ions reaching the wall. This potential gradient cannot extend over large sections of the plasma, since Debye shielding (Chapter 1) confines potential variations in a plasma to a layer of the order of several Debye lengths in thickness. This layer of potential gradient, which must exist on all walls with which the plasma is in contact, is called the sheath. Within the sheath, charge neutrality is not preserved, not even approximately, since qΦ changes through the sheath by an amount comparable to kBT. In this chapter, we provide a simple treatment of the formation and structure of the plasma sheath and discuss a simple but very useful device, called the Langmuir probe, which is commonly used to measure electron density and temperature.
Nuclear fusion research is entering a new phase, in which power exhaust will play a vital role. This book presents a complete and up-to-date summary of this emerging field of research in fusion plasmas, focusing on the leading tokamak concept. Emphasis is placed on rigorous theoretical development, supplemented by numerical simulations, which are used to explain and quantify a range of experimental observations. The text offers a self-contained introduction to power exhaust, and deals in detail with both edge plasma turbulence and edge localized modes, providing the necessary background to understand these important, yet complicated phenomena. Combining an in-depth overview with an instructive development of concepts, this is an invaluable resource for academic researchers and graduate students in plasma physics.
There has been an increase in interest worldwide in fusion research over the last decade and a half due to the recognition that a large number of new, environmentally attractive, sustainable energy sources will be needed to meet ever increasing demand for electrical energy. Based on a series of course notes from graduate courses in plasma physics and fusion energy at MIT, the text begins with an overview of world energy needs, current methods of energy generation, and the potential role that fusion may play in the future. It covers energy issues such as the production of fusion power, power balance, the design of a simple fusion reactor and the basic plasma physics issues faced by the developers of fusion power. This book is suitable for graduate students and researchers working in applied physics and nuclear engineering. A large number of problems accumulated over two decades of teaching are included to aid understanding.
This combination of text and reference book describes the physical, plasma and chemical processes controlling the behaviour of ionospheres, upper atmospheres and exospheres. It summarises the structure, chemistry, dynamics and energetics of the terrestrial ionosphere and other solar system bodies, and discusses the processes, mechanisms and transport equations for solving fundamental research problems. This second edition incorporates new results, model developments and interpretations from the last ten years. It includes the latest material on neutral atmospheres; the terrestrial ionosphere at low, middle and high latitudes; and planetary atmospheres and ionospheres, where results from recent space missions have yielded fresh data. Appendices outline physical constants, mathematical formulas, transport coefficients, and other important parameters for ionospheric calculations. This is an essential resource for researchers studying ionospheres, upper atmospheres, aeronomy and plasma physics. It is also an ideal textbook for graduate-level courses, with supplementary problem sets, and solutions for instructors at www.cambridge.org/9780521877060.
This highly acclaimed series of monographs provides introductory accounts of specialized topics in mathematical physics for graduate students and research workers. The monographs in this series are of outstanding scholarship and written by those at the very frontiers of research. Subject areas covered include cosmology, astrophysics, relativity theory, particle physics, quantum theory, nuclear physics, statistical mechanics, condensed matter physics, plasma physics and the theory of chaos.
Ionospheres provides a comprehensive description of the physical, plasma and chemical processes controlling the behavior of ionospheres. The relevant transport equations and related coefficients are derived in detail and their applicability and limitations are described. Relevant wave processes are outlined and important ion chemical processes and reaction rates are presented. The various energy deposition and transfer mechanisms are described in some detail, and a chapter is devoted to the various processes controlling the upper atmosphere and exosphere. The second half of the book presents our current understanding of the structure, chemistry, dynamics and energetics of the terrestrial ionosphere, and other solar system bodies. The final chapter describes ionospheric measurement techniques. The book will form a comprehensive and lasting reference for scientists interested in ionospheres, and it will also prove an ideal textbook for graduate students. It contains extensive student problem sets, and an answer book is available for instructors.
This book, first published in 2000, provides a comprehensive introduction to the theory of magnetic field line reconnection, now a major subject in plasma physics. The book focuses on the various reconnection mechanisms dominating magnetic processes under the different plasma conditions encountered in astrophysical systems and in laboratory fusion devices. The book consists of two major parts: the first deals with the classical resistive approach, while the second presents an overview of weakly collisional or collisionless plasmas. Applications primarily concern astrophysical phenomena and dynamo theory, with emphasis on the solar and geodynamo, as well as magnetospheric substorms, the most spectacular reconnection events in the magnetospheric plasma. The theoretical procedures and results also apply directly to reconnection processes in laboratory plasmas, in particular the sawtooth phenomenon in tokamaks. The book will be of value to graduate students and researchers interested in magnetic processes both in astrophysical and laboratory plasma physics.
A self-contained introduction to magnetohydrodynamics (MHD), with emphasis on nonlinear processes. Chapters 2 to 4 outline the conventional aspects of MHD theory, magnetostatic equilibrium and linear stability theory, which form a natural basis for the topics in the subsequent chapters. The main part, chapters 5 to 7, presents nonlinear theory, starting with the evolutions and saturations of individual ideas and resistive instabilities, continuing with a detailed analysis of magnetic reconnection, and concluding with the most complex nonlinear behaviour, that of MHD turbulence. The last chapters describe three important applications of the theory: disruptive processes in tokamaks, MHD effects in reversed-field pinches, and solar flares. In the presentation the focus is more on physical mechanisms than on special formalisms. The book is essential reading for researchers and graduate students interested in MHD processes both in laboratory and in astrophysical plasmas.
The physical properties of the ionized layer in the Earth's upper atmosphere enable us to use it to support an increasing range of communications applications. This book presents a modern treatment of the physics and phenomena of the high latitude upper atmosphere and the morphology of radio propagation in the auroral and polar regions. Chapters cover the basics of radio propagation and the use of radio techniques in ionospheric studies. Many investigations of high latitude radio propagation have previously only been published in Conference Proceedings and organizational reports. This book includes many examples of the behavior of quiet and disturbed high latitude HF propagation. Ample cross-referencing, chapter summaries and reference lists make this book an invaluable aid for graduate students, ionospheric physicists and radio engineers.
The ionized material that constitutes plasma permeates almost all of the universe beyond the planets and their atmospheres and satellites. This book describes the linear theory of many different waves and instabilities that may propagate in a collisionless plasma. Electrostatic and electromagnetic fluctuations, and a variety of instability sources are considered. Applications of the theory are discussed with respect to spacecraft observations in the solar wind, terrestrial magnetosheath, magnetosphere and magnetotail and at the bow shock and magnetopause. Tables at the end of most chapters summarize wave and instability nomenclature and properties, and problems for the reader to solve are interspersed throughout the text. Together these make this book of great value to both the student and research worker in space physics.