We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ever since Shor's quantum algorithm for factoring integers was discovered three decades ago, showing that quantum algorithms could solve a problem relevant to everyday cryptography, researchers have been working to expand the list of real-world problems to which quantum computing can be applied. This book surveys the fruits of this effort, covering proposed quantum algorithms for concrete problems in many application areas, including quantum chemistry, optimization, finance, and machine learning. The book clearly states the problem being solved and the full computational complexity of the quantum algorithm, making sure to account for the contribution from all the underlying primitive ingredients. Separately, the book also provides a detailed, independent summary of the most common algorithmic primitives. The book has a modular, encyclopedic format to facilitate navigation of the material, and to provide a quick reference for designers of quantum algorithms and quantum computing researchers. This title is also available as open access on Cambridge Core.
This Element presents the κ-generalized distribution, a statistical model tailored for the analysis of income distribution. Developed over years of collaborative, multidisciplinary research, it clarifies the statistical properties of the model, assesses its empirical validity and compares its effectiveness with other parametric models. It also presents formulas for calculating inequality indices within the κ-generalized framework, including the widely used Gini coefficient and the relatively lesser-known Zanardi index of Lorenz curve asymmetry. Through empirical illustrations, the Element criticizes the conventional application of the Gini index, pointing out its inadequacy in capturing the full spectrum of inequality characteristics. Instead, it advocates the adoption of the Zanardi index, accentuating its ability to capture the inherent heterogeneity and asymmetry in income distributions.
This book is designed as per NEP 2020 guidelines and is meant for undergraduate physics students. The text begins with a coverage of kinetic theory and dynamics of ideal gases and then proceeds to discuss real gases. Thereafter the basic formalism, zeroth law, first and second laws of thermodynamics are introduced. It concludes with chapters on thermodynamic potentials and Maxwell's relations as well as classical and quantum theory of black body radiation. Written in a lucid manner, students will require only a prior knowledge of mathematical concepts such as differentiation and integration to understand these topics. Each chapter is divided into sections and subsections for ease of comprehension. Special attention has been paid to the simplification of concepts by providing intermediate steps for difficult derivations. Chapters are supported by a rich pool of practice questions like multiple choice questions, short answer type questions, long answer type questions, and numerical problems.
The study of magnetism has driven progress in experimental science for centuries, and demonstrates how ground-breaking theoretical advances can be translated directly into essential, transformative technology. Now in an expanded second edition, this popular textbook provides comprehensive coverage of the theory and practical applications of magnetism and magnetic materials. The text has been updated throughout to address significant developments from the last decade, including new theoretical insights, advanced experimental probes, and thin film technology. A new chapter covers the important topic of transverse magnetotransport and effects of topology. The book is extensively illustrated with over 700 figures conveying important experimental data, concepts and applications, and each self-contained chapter concludes with a summary section, a list of further reading and a set of exercises. The text contains a wealth of useful information that will be of interest to graduate students and researchers in physics, materials science and engineering.
Artificial intelligence is dramatically reshaping scientific research and is coming to play an essential role in scientific and technological development by enhancing and accelerating discovery across multiple fields. This book dives into the interplay between artificial intelligence and the quantum sciences; the outcome of a collaborative effort from world-leading experts. After presenting the key concepts and foundations of machine learning, a subfield of artificial intelligence, its applications in quantum chemistry and physics are presented in an accessible way, enabling readers to engage with emerging literature on machine learning in science. By examining its state-of-the-art applications, readers will discover how machine learning is being applied within their own field and appreciate its broader impact on science and technology. This book is accessible to undergraduates and more advanced readers from physics, chemistry, engineering, and computer science. Online resources include Jupyter notebooks to expand and develop upon key topics introduced in the book.
This book applies rotation theory to problems involving vectors and coordinates, with an approach that combines easily visualised procedures with smart mathematics. It constructs rotation theory from the ground up, building from basic geometry through to the motion and attitude equations of rockets, and the tensor analysis of relativity. The author replaces complicated pictures of superimposed axes with a simple and intuitive procedure of rotating a model aircraft, to create rotation sequences that are easily turned into mathematics. He combines the best of the 'active' and 'passive' approaches to rotation into a single coherent theory, and discusses many potential traps for newcomers. This volume will be useful to astronomers and engineers sighting planets and satellites, computer scientists creating graphics for movies, and aerospace engineers designing aircraft; also to physicists and mathematicians who study its abstract aspects.
This book introduces and explores some of the deep connections between Einstein's theory of gravitation and differential geometry. As an outgrowth of graduate summer schools, the presentation is aimed at graduate students in mathematics and mathematical physics, starting from the foundations of special and general relativity, and moving to more advanced results in geometric analysis and the Einstein constraint equations. Topics include the formulation of the Einstein field equation and the Einstein constraint equations; gluing construction of initial data sets which are Schwarzschild near infinity; and an introduction to the Riemannian Penrose inequality. While the book assumes a background in differential geometry and real analysis, a number of basic results in geometry are provided. There are well over 100 exercises, many woven into the fabric of the chapters as well as others collected at the end of chapters, to give readers a chance to engage and extend the text.
This text introduces readers to magnetohydrodynamics (MHD), the physics of ionised fluids. Traditionally MHD is taught as part of a graduate curriculum in plasma physics. By contrast, this text - one of a very few - teaches MHD exclusively from a fluid dynamics perspective, making it uniquely accessible to senior undergraduate students. Part I of the text uses the MHD Riemann problem as a focus to introduce the fundamentals of MHD: Alfvén's theorem; waves; shocks; rarefaction fans; etc. Part II builds upon this with presentations of broader areas of MHD: fluid instabilities; viscid hydrodynamics; steady-state MHD; and non-ideal MHD. Throughout the text, more than 125 problems and several projects (with solutions available to instructors) reinforce the main ideas. Optionally, large-font lesson plans for a 'flipped-style' class are also available to instructors. This book is suitable for advanced undergraduate and beginning graduate students, requiring no previous knowledge of fluid dynamics or plasma physics.
This book describes the development of our understanding of the strong interactions in particle physics, through its competing ideas and personalities, its false starts, blind alleys, and moments of glory – culminating with the author's discovery of quarks, real particles living in a deeper layer of reality. How were quarks discovered, what did physicists think they were, and what did they turn out to be? These questions are answered through a collection of personal remembrances. The focus is on the reality of quarks, and why that reality made them so difficult to accept. How Feynman and Gell-Mann practiced physics, with their contrasting styles and motivations, presented different obstacles to accepting this reality. And how was the author, as a graduate student, able to imagine their existence, and act on it? Science buffs, students, and experts alike will find much here to pique their interest and learn about quarks along the way.
This third volume of the award-winning The International Atlas of Mars Exploration picks up the story where Volume 2 left off, after the first Martian year of Curiosity's mission in 2014. Covering the exploration of Mars from 2015 to 2021 and supported by a unique set of detailed annotated maps and graphics, this volume documents the activities of Opportunity, Curiosity, InSight, China's rover Zhurong, and the early activities of Mars 2020. This essential visual reference chronicles the day-to-day operations of each mission, recording future landing site planning, how landing sites were chosen and what happened during each mission. Like the previous volumes, the atlas is accessible to space enthusiasts, but the bibliography and meticulous detail make it a particularly valuable resource for academic researchers and students working in planetary science and planetary mapping.
The much-anticipated new edition of 'Learning the Art of Electronics' is here! It defines a hands-on course, inviting the reader to try out the many circuits that it describes. Several new labs (on amplifiers and automatic gain control) have been added to the analog part of the book, which also sees an expanded treatment of meters. Many labs now have online supplements. The digital sections have been rebuilt. An FPGA replaces the less-capable programmable logic devices, and a powerful ARM microcontroller replaces the 8051 previously used. The new microcontroller allows for more complex programming (in C) and more sophisticated applications, including a lunar lander, a voice recorder, and a lullaby jukebox. A new section explores using an Integrated Development Environment to compile, download, and debug programs. Substantial new lab exercises, and their associated teaching material, have been added, including a project reflecting this edition's greater emphasis on programmable logic.
This book presents the foundational physics underlying the generation of high intensity laser light and its interaction with matter. Comprehensive and rigorous, it describes how the strong electric and magnetic fields of a high intensity light pulse can shape the nonlinear dynamics of all forms of matter, from single electrons up to atomic clusters and plasmas. Key equations are derived from first principles and important results are clearly explained, providing readers with a firm understanding of the fundamental concepts that underlie modern strong field physics research. The text concludes with suggestions for further reading, along with an extensive reference list. Effective as both an educational resource and as a reference text, this book will be invaluable to graduates and researchers across the atomic, molecular and optical (AMO) and plasma physics communities.
The measurement problem has been a central puzzle of quantum theory since its inception, and understanding how the classical world emerges from our fundamentally quantum universe is key to its resolution. While the 'Copenhagen' and 'Many Worlds' interpretations have dominated discussion of this philosophically charged question, Zurek builds on the physics of decoherence and introduces the theory of 'Quantum Darwinism' to provide a novel account of the emergence of classical reality. Opening with a modern view of quantum theory, the book reconsiders the customary textbook account of quantum foundations, showing how the controversial axioms (including Born's rule) follow from the consistent core postulates. Part II discusses decoherence and explores its role in the quantum-to-classical transition. Part III introduces Quantum Darwinism, explaining how an information-theoretic perspective complements, elucidates, and reconciles the 'Copenhagen' and 'Many Worlds' interpretations. This insightful book is essential reading for any student or researcher interested in quantum physics.
Analog and digital electronics are an important part of most modern courses in physics. Closely mapped to the current UGC CBCS syllabus, this comprehensive textbook will be a vital resource for undergraduate students of physics and electronics. The content is structured to emphasize fundamental concepts and applications of various circuits and instruments. A wide range of topics like semiconductor physics, diodes, transistors, amplifiers, Boolean algebra, combinational and sequential logic circuits, and microprocessors are covered in lucid language and illustrated with many diagrams and examples for easy understanding. A diverse set of questions in each chapter, including multiple-choice, reasoning, numerical, and practice problems, will help students consolidate the knowledge gained. Finally, computer simulations and project ideas for projects will help readers apply the theoretical concepts and encourage experiential learning.
The fourth edition of Pedrottis' Introduction to Optics is a comprehensive revision of a classic guide to the fascinating properties of light, now with new authors. Ideally suited for undergraduate optics courses in physics and electrical/electronic engineering departments, this edition adopts a distinctive phenomenological approach, bringing the underlying science to life through interactive simulations and beautifully revised figures. The modular structure and succinct style of previous editions has been maintained, while the content has been modernized, new topics have been added, and a greater consistency of terminology attained. For even more effective learning, a recurring theme of student engagement runs throughout the text, supported by a multifaceted pedagogical package that reinforces key concepts, develops a clear understanding of optical technologies and applications, and connects to students' experiences and observations from everyday life.