We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In Chapter 2 we saw how the motion of a guitar string could be established by considering the physical mechanisms that governed it and using them to determine the wave equation for the system. In this chapter we shall see that the same approach can be applied to a wide range of physical systems. We begin with detailed derivations of the wave equations for electromagnetic waves along a coaxial cable and in free space, and then examine ocean waves and ripples on a fluid surface, showing how they may be extended to describe a variety of atmospheric and oceanic phenomena.
In each case, we begin by determining how the disturbance or displacement at any point is affected by that at adjacent points, and how the physical properties of the system determine how quickly it can respond. This allows us to derive a partial differential equation that describes the wave propagation and embodies all the relevant physics. What remains, as before, is the purely mathematical solution of this wave equation.
Although this chapter provides many useful illustrations of the principles outlined in Chapter 2, the reader may safely skip these examples without missing any fundamental principles upon which we shall build later.
Waves along a coaxial cable
Coaxial cables are used for the distribution of electrical signals, and include microphone cables, television aerial leads and, indeed, most of the connections between audio and video apparatus.
The physics of waves is too often presented only in a few rather straightforward and sometimes uninspiring contexts: the motion of strings, sound, light and so on. Students may be led to regard the topic with disdain; and they may be left with some crucial misconceptions, such as that all waves are sinusoidal. Wave physics may hence be considered an old-fashioned field with little relevance to the more modern, exciting areas of quantum physics, nanotechnology and cosmology. Yet there is plenty to find interesting just in classical and modern optics and the physics of musical instruments; and wave phenomena prove to be central to most of the fascinating and newly emerging branches of both fundamental and applied physics.
Most aspects of physics may be viewed from two perspectives: one, named after Lagrange, addresses particles, while the other, due to Euler, considers fields. We may, for example, establish the electromagnetic properties of matter by considering the Coulomb forces among all the constituent charged particles; or we may describe the material's bulk response to a field and tackle the problem that way. This duality pervades most areas of physics and, while one of the alternatives often proves vastly more convenient than the other, the two are ultimately quite consistent, equivalent viewpoints.
When we extend our analysis to dynamic systems, the particle approach becomes a form of ‘kinetics’ or ballistics, and changes in the field description are manifest as waves.
The Cambridge Handbook of Physics Formulas is a quick-reference aid for students and professionals in the physical sciences and engineering. It contains more than 2000 of the most useful formulas and equations found in undergraduate physics courses, covering mathematics, dynamics and mechanics, quantum physics, thermodynamics, solid state physics, electromagnetism, optics and astrophysics. An exhaustive index allows the required formulas to be located swiftly and simply, and the unique tabular format crisply identifies all the variables involved. The Cambridge Handbook of Physics Formulas comprehensively covers the major topics explored in undergraduate physics courses. It is designed to be a compact, portable, reference book suitable for everyday work, problem solving or exam revision. All students and professionals in physics, applied mathematics, engineering and other physical sciences will want to have this essential reference book within easy reach.
Unrivalled in its coverage and unique in its hands-on approach, this guide to the design and construction of scientific apparatus is essential reading for every scientist and student of engineering, and physical, chemical, and biological sciences. Covering the physical principles governing the operation of the mechanical, optical and electronic parts of an instrument, new sections on detectors, low-temperature measurements, high-pressure apparatus, and updated engineering specifications, as well as 400 figures and tables, have been added to this edition. Data on the properties of materials and components used by manufacturers are included. Mechanical, optical, and electronic construction techniques carried out in the lab, as well as those let out to specialized shops, are also described. Step-by-step instruction supported by many detailed figures, is given for laboratory skills such as soldering electrical components, glassblowing, brazing, and polishing.
Many students find quantum mechanics conceptually difficult when they first encounter the subject. In this book, the postulates and key applications of quantum mechanics are well illustrated by means of a carefully chosen set of problems, complete with detailed, step-by-step solutions. Beginning with a chapter on orders of magnitude, a variety of topics are then covered, including the mathematical foundations of quantum mechanics, Schrödinger's equation, angular momentum, the hydrogen atom, the harmonic oscillator, spin, time-independent and time-dependent perturbation theory, the variational method, multielectron atoms, transitions and scattering. Throughout, the physical interpretation or application of certain results is highlighted, thereby providing useful insights into a wide range of systems and phenomena. This approach will make the book invaluable to anyone taking an undergraduate course in quantum mechanics.
All students taking laboratory courses within the physical sciences and engineering will benefit from this book, whilst researchers will find it an invaluable reference. This concise, practical guide brings the reader up-to-speed on the proper handling and presentation of scientific data and its inaccuracies. It covers all the vital topics with practical guidelines, computer programs (in Python), and recipes for handling experimental errors and reporting experimental data. In addition to the essentials, it also provides further background material for advanced readers who want to understand how the methods work. Plenty of examples, exercises and solutions are provided to aid and test understanding, whilst useful data, tables and formulas are compiled in a handy section for easy reference.
Equilibrium Thermodynamics gives a comprehensive but concise course in the fundamentals of classical thermodynamics. Although the subject is essentially classical in nature, illustrative material is drawn widely from modern physics and free use is made of microscopic ideas to illuminate it. The overriding objective in writing the book was to achieve a clear exposition: to give an account of the subject that it both stimulating and easy to learn from. Classical thermodynamics has such wide application that it can be taught in many ways. The terms of reference for Equilibrium Thermodynamics are primarily those of the undergraduate physicist; but it is also suitable for courses in chemistry, engineering, materials science etc. The subject is usually taught in the first or second year of an undergraduate course, but the book takes the student to degree standard (and beyond). Prerequisites are elementary or school-level thermal physics.
Covering many techniques widely used in research, this book will help researchers in the physical sciences and engineering solve troublesome - and potentially very time consuming - problems in their work. The book deals with technical difficulties that often arise unexpectedly during the use of various common experimental methods, as well as with human error. It provides preventive measures and solutions for such problems, thereby saving valuable time for researchers. Some of the topics covered are: sudden leaks in vacuum systems, electromagnetic interference in electronic instruments, vibrations in sensitive equipment, and bugs in computer software. The book also discusses mistakes in mathematical calculations, and pitfalls in designing and carrying out experiments. Each chapter contains a summary of its key points, to give a quick overview of important potential problems and their solutions in a given area.
Practical Physics demonstrates the purposive and critical approach that should be made to all experimental work in physics. It does not describe a systematic course of experiments, but is intended as a companion to any undergraduate course of practical work. The text is in three parts. The first deals with the statistical treatment of data, the second with experimental methods, and the third with such essential matters as keeping efficient records, accuracy in calculations, and scientific writing. The text is liberally illustrated with examples and exercises, with solutions to the latter. The new edition includes a treatment of the χ2 distribution, a section on atomic clocks, worked examples based on spreadsheets, and additional exercises. Existing examples and references have been brought up to date. Although intended for undergraduates, Practical Physics has proved of interest to school-students, teachers, and researchers, not only in physics, but also in other branches of science.
Physics by Example contains two hundred problems from a wide range of key topics, along with detailed, step-by-step solutions. By guiding the reader through carefully chosen examples, this book will help to develop skill in manipulating physical concepts. Topics dealt with include: statistical analysis, classical mechanics, gravitation and orbits, special relativity, basic quantum physics, oscillations and waves, optics, electromagnetism, electric circuits, and thermodynamics. There is also a section listing physical constants and other useful data, including a summary of some important mathematical results. In discussing the key factors and most suitable methods of approach for given problems, this book imparts many useful insights, and will be invaluable to anyone taking first or second year undergraduate courses in physics.
From Measures to Itô Integrals gives a clear account of measure theory, leading via L2-theory to Brownian motion, Itô integrals and a brief look at martingale calculus. Modern probability theory and the applications of stochastic processes rely heavily on an understanding of basic measure theory. This text is ideal preparation for graduate-level courses in mathematical finance and perfect for any reader seeking a basic understanding of the mathematics underpinning the various applications of Itô calculus.
It is usually straightforward to calculate the result of a practical experiment in the laboratory. Estimating the accuracy of that result is often regarded by students as an obscure and tedious routine, involving much arithmetic. An estimate of the error is, however, an integral part of the presentation of the results of experiments. This textbook is intended for undergraduates who are carrying out laboratory experiments in the physical sciences for the first time. It is a practical guide on how to analyse data and estimate errors. The necessary formulas for performing calculations are given, and the ideas behind them are explained, although this is not a formal text on statistics. Specific examples are worked through step by step in the text. Emphasis is placed on the need to think about whether a calculated error is sensible. At first students should take this book with them to the laboratory, and the format is intended to make this convenient. The book will provide the necessary understanding of what is involved, should inspire confidence in the method of estimating errors, and enable numerical calculations without too much effort. The author's aim is to make practical classes more enjoyable. Students who use this book will be able to complete their calculations quickly and confidently, leaving time to appreciate the basic physical ideas involved in the experiments.