We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The physics of non-equilibrium many-body systems is a rapidly expanding area of theoretical physics. Traditionally employed in laser physics and superconducting kinetics, these techniques have more recently found applications in the dynamics of cold atomic gases, mesoscopic and nano-mechanical systems, and quantum computation. This book provides a detailed presentation of modern non-equilibrium field-theoretical methods, applied to examples ranging from biophysics to the kinetics of superfluids and superconductors. A highly pedagogical and self-contained approach is adopted within the text, making it ideal as a reference for graduate students and researchers in condensed matter physics. In this Second Edition, the text has been substantially updated to include recent developments in the field such as driven-dissipative quantum systems, kinetics of fermions with Berry curvature, and Floquet kinetics of periodically driven systems, among many other important new topics. Problems have been added throughout, structured as compact guided research projects that encourage independent exploration.
The magnetic properties in solids originate mainly from the magnetic moments associated with electrons. The nuclei in solids also carry a magnetic moment. That, however, varies from isotope to isotope of an element. The nuclear magnetic moment is zero for a nucleus with even numbers of protons and neutrons in its ground state. The nuclei can have a non-zero magnetic moment if there are odd numbers of either or both neutrons and protons. However, the magnetic moment of a nucleus is three orders of magnitude less than that of the electron.
The microscopic theory of magnetism is based on the quantum mechanics of electronic angular momentum, which has two distinct sources: orbital motion and the intrinsic property of electron spin [1]. The spin and orbital motion of electrons are coupled by the spin–orbit interaction. The magnetism observed in various materials can be fundamentally different depending on whether the electrons are free to move within the material (such as conduction electrons in metals) or are localized on the ion cores. In a magnetic field, bound electrons undergo Larmor precession, whereas free electrons follow cyclotron orbits. The free-electron model is usually a starting point for the discussion of magnetism in metals. This leads to temperature-independent Pauli paramagnetism and Landau diamagnetism. This is the case with noble metals and alkali metals. On the other hand, localized non-interacting electrons in 3d-transition metals, 4f-rare earth elements, 5f-actinide elements, and their alloys and intermetallic compounds with incompletely filled inner shells exhibit Curie paramagnetism. Many transition metal-based insulating oxide and sulfide compounds also show Curie paramagnetism. In the presence of magnetic interactions, many such systems eventually develop long-range magnetic order if the magnetic interaction can overcome thermal fluctuations in some temperature regimes.
Against the above backdrop, in the next three chapters, we will introduce the readers to the basic phenomenology of magnetism, concentrating mainly on solid materials with some electrons localized on the ion cores. There are some excellent textbooks available on the subject, including those by J. M. D. Coey [1], B. D. Cullity and C. D. Graham [2], D. Jiles [3], S. J. Blundell [4], and N. W. Ashcroft and N. D. Mermin [5].
In this chapter, we shall study different types of ordered magnetic states that can arise as a result of various kinds of magnetic interactions as discussed in the previous section. In Fig. 5.1 we present some of these possible ground states: ferromagnet, antiferromagnet, spiral and helical structures, and spin-glass. There are other more complicated ground states possible, the discussion of which is beyond the scope of the present book. For detailed information on the various magnetically ordered states in solids, the reader should refer to the excellent textbooks by J. M. D. Coey [1] and S. J. Blundell [4].
Ferromagnetism
In a ferromagnet, there exists a spontaneous magnetization even in the absence of an external or applied magnetic field, and all the magnetic moments tend to point towards a single direction. The latter phenomenon, however, is not necessarily valid strictly in all ferromagnets throughout the sample. This is because of the formation of domains in the ferromagnetic samples. Within the individual domains, the magnetic moments are aligned in the same direction, but the magnetization of each domain may point towards a different direction than its neighbour. We will discuss more on the magnetic domains later on.
The Hamiltoninan for a ferromagnet in an applied magnetic field can be expressed as:
The exchange interaction Jij involving the nearest neighbours is positive, which ensures ferromagnetic alignment. The first term on the right-hand side of Eqn. 5.1 is the Heisenberg exchange energy, and the second term is the Zeeman energy. In the discussion below it is assumed that one is dealing with a system with no orbital angular momentum, so that L = 0 and J= S.
In order to solve the equation it is necessary to make an assumption by defining an effective molecular field at the ithsite by:
Now the total energy associated with ith spin consists of a Zeeman part gμB_Si._B and an exchange part. The total exchange interaction between the ith spin and its neighbours can be expressed as:
The factor 2 in Eqn. 5.3 arises due to double counting. The exchange interaction is essentially replaced by an effective molecular field Bmf produced by the neighbouring spins.
A neutron is a nuclear particle, and it does not exist naturally in free form. Outside the nucleus, it decays into a proton, an electron, and an anti-neutrino. The scattering of low energy neutrons in solids forms the basis of a very powerful experimental technique for studying material properties. A neutron has a mass mn= 1.675 × 10−27 kg, which is close to that of the proton and a lifetime τ = 881.5 ±1.5 s. This lifetime is considerably longer than the time involved in a typical scattering experiment, which is expected to be hardly a fraction of a second.
A neutron has several special characteristics, which makes it an interesting tool for studying magnetic materials as well as engineering materials and biological systems. It is an electrically neutral, spin-1/2 particle that carries a magnetic dipole moment of μ = -1.913 μN, where nuclear magneton μN = eh/mp = 5.051 ×10−27 J/T. The zero charge of neutron implies that its interactions with matter are restricted to the short-ranged nuclear and magnetic interactions. This leads to the following important consequences:
1. The interaction probability is small, and hence the neutron can usually penetrate the bulk of a solid material.
2. Additionally, a neutron interacts through its magnetic moment with the electronic moments present in a magnetic material strong enough to get scattered measurably but without disturbing the magnetic system drastically. This magnetic neutron scattering has its origin in the interaction of the neutron spin with the unpaired electrons in the sample either through the spin of the electron or through the orbital motion of the electron. Thus, the magnetic scattering of neutrons in a solid can provide the most direct information on the arrangement of magnetic moments in a magnetic solid.
3. Energy and wavelength of a neutron matches with electronic, magnetic, and phonon excitations in materials and hence provide direct information on these excitations.
Neutrons behave predominantly as particles in neutron scattering experiments before the scattering events, and as waves when they are scattered. They return to their particle nature when they reach the detectors after the scattering events.