I was approached by many publishers in the early years of this century to write a book about structural DNA nanotechnology. At the time, I was working on the central goal of my program, the control of the assembly of matter in three dimensions. I was rightfully afraid that I could get distracted from achieving that goal, so I turned them all down. Ultimately, in 2009, we published the 3D structure of a self-assembled DNA lattice, and I felt it was time to put my stamp on the field. In 2010, Cambridge University Press agreed to publish the book, I applied for and got a Guggenheim Fellowship, and I took my first sabbatical, to write it.
During the twentieth century, the field and what we were doing in my laboratory were kind of the same thing, but as the new millennium dawned, interest in DNA nanotechnology grew, and many laboratories were attracted to the field. The directions that the field has gone are not entirely reflective of my take on the issue of controlling structure with branched DNA motifs. I am interested in making lattices, not objects, but that is the main thrust of the field these days, largely owing to the popularity of DNA origami and DNA bricks. Both of those approaches are themselves consequences of the dropping price of DNA, a sort of Moore's law of DNA synthesis.
Thus, this book is heavily laden with the things that I do and that I have thought about since 1980. These include topology, sequence control, and other issues that are not thought about much today. I was about 2/3 of the way through the book at the 3/4 point of my sabbatical. At that point, I suffered an injury that kept me from finishing the book until my deadline approached at the end of 2014. The field has grown substantially from 2011 until now, but I never saw this monograph as a big review article containing the latest and greatest. Thus, the final two chapters are really just highlights of their topics, and the reader should not expect them to be even close to comprehensive.