We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Precise instrumental calibration is of crucial importance to 21-cm cosmology experiments. The Murchison Widefield Array’s (MWA) Phase II compact configuration offers us opportunities for both redundant calibration and sky-based calibration algorithms; using the two in tandem is a potential approach to mitigate calibration errors caused by inaccurate sky models. The MWA Epoch of Reionization (EoR) experiment targets three patches of the sky (dubbed EoR0, EoR1, and EoR2) with deep observations. Previous work in Li et al. (2018) and (2019) studied the effect of tandem calibration on the EoR0 field and found that it yielded no significant improvement in the power spectrum (PS) over sky-based calibration alone. In this work, we apply similar techniques to the EoR1 field and find a distinct result: the improvements in the PS from tandem calibration are significant. To understand this result, we analyse both the calibration solutions themselves and the effects on the PS over three nights of EoR1 observations. We conclude that the presence of the bright radio galaxy Fornax A in EoR1 degrades the performance of sky-based calibration, which in turn enables redundant calibration to have a larger impact. These results suggest that redundant calibration can indeed mitigate some level of model incompleteness error.
We have used Hubble Space Telescope and ground-based photometry to determine total V-band magnitudes and mass-to-light ratios of more than 150 Galactic globular clusters. We do this by summing up the magnitudes of their individual member stars, using colour-magnitude information, Gaia DR2 proper motions, and radial velocities to distinguish cluster stars from background stars. Our new magnitudes confirm literature estimates for bright clusters with $V<8$, but can deviate by up to two magnitudes from literature values for fainter clusters. They lead to absolute mass-to-light ratios that are confined to the narrow range $1.4<M/L_V<2.5$, significantly smaller than what was found before. We also find a correlation between a cluster’s $M/L_V$ value and its age, in agreement with theoretical predictions. The $M/L_V$ ratios of globular clusters are also in good agreement with those predicted by stellar isochrones, arguing against a significant amount of dark matter inside globular clusters. We finally find that, in agreement with what has been seen in M 31, the magnitude distribution of outer halo globular clusters has a tail towards faint clusters that is absent in the inner parts of the Milky Way.
In the Galactic center, there are many massive stars blowing strong stellar winds, which will strongly influence the surrounding environment and even the Galactic feedback. The Galactic center is quiescent at present, so the unique continuous energy input source is the massive star, consequently giving rise to many special features, such as the radio bubbles, the X-ray chimneys, the non-thermal filaments and high-metallicity abundance. However, it is difficult to quantify their contributions due to the complex environment in this region, and the past supernovae and Sgr A* activity are also important factors shaping these features. In this work, we discuss some structures possibly related to the stellar winds and perform preliminary simulations to study their evolution. We conclude the stellar winds can obviously influence a large scale ∼ 100 pc, and can possibly influence a larger scale environment indirectly.
Most stars with birth masses larger than that of our Sun belong to binary or higher order multiple systems. Similarly, most stars have stellar winds. Radiation pressure and multiplicity create outflows of material that remove mass from the primary star and inject it into the interstellar medium or transfer it to a companion. Both have strong impact on the subsequent evolution of the stars, yet they are often studied separately. In this short review, I will sketch part of the landscape of the interplay between stellar winds and binarity. I will present several examples where binarity shapes the stellar outflows, providing new opportunities to understand and measure mass loss properties. Stellar winds spectral signatures often help clearly identifying key stages of stellar evolution. The multiplicity properties of these stages then shed a new light onto evolutionary connections between the different categories of evolved stars.
One of the big challenges for 21st century stellar astrophysics is the impact of binary interactions on stellar evolution. Such interactions are believed to play a key role in the death throes of 1-8 M⊙ stars, as they evolve from the AGB stars into Planetary Nebulae. X-ray surveys of UV-emitting AGB stars show that ∼40% of objects with FUV emission and GALEX FUV/NUV flux ratios ≳0.2 have variable X-ray emission characterized by very high temperatures (Tx∼35-160 MK) and luminosities (Lx∼0.002-0.2L⊙). We hypothesize that such AGB stars have accretion and (accretion-powered) outflows associated with a close binary companion. UV spectroscopy with HST/STIS of our brightest object (Y Gem) shows the presence of infalling and outflowing gas, providing direct kinematic confirmation of this hypothesis. However, the UV-emitting AGB star population is dominated by objects with little or no FUV emission, and we do not know whether the UV emission from these is intrinsic to the AGB star or extrinsic (i.e., due to binarity). Here we present the first results from a large grid of simple chromospheric models to help discriminate between the intrinsic and extrinsic mechanisms of UV emission for AGB stars.