We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We analyse VLBI and optical images of AGNs and their host galaxies and look for statistical correlations between the shape and orientation of the galaxy and the direction of the jet. We utilise the Astrogeo catalogue, which has over 9000 VLBI sources, many of those with a clear core-jet like structure that allows for the jet position angle to be reliably determined. We then use the VLBI source positions to search for optical counterparts within various optical surveys. In order to parameterise the orientation and shape of the host galaxy, we fitted a Gaussian elliptical model to the optical image, taking the PSF into account. We check our own shape parameters from this fit against the ones provided by the optical surveys. As of yet, no clear correlation between the galaxy morphology and the jet direction is seen.
We present an observational multiwavelength campaign during 2018–19 for PBC J2333.9–2343, a giant radio galaxy with a bright central core associated to a blazar nucleus, whose structure could be due to a significant jet reorientation. We report flux increases by a factor of two or more on timescales shorter than a month, resembling flaring events. The cross correlation between the NIR and optical bands shows quasi-simultaneous variations arising from the jet. The optical variability properties of PBC J2333.9–2343 are more comparable to a sample of blazars than to non-blazar AGN. The SED of the nucleus shows two peaks, with a derived jet angle of 3 degrees, also typical of a blazar. Therefore, we confirm the presence of a blazar-like core in the center of this galaxy.
Minkowski’s Object and ‘Death Star galaxy’ are two of the famous cases of rare instances when a radio jet has been observed to directly hit a neighbouring galaxy. RAD12, the RAD@home citizen science discovery with GMRT being presented here, is not only a new system being added to nearly half a dozen rare cases known so far but also the first case where the neighbouring galaxy is not a minor/dwarf companion but a galaxy bigger than the host of the radio jet. Additionally, the jet appears to be one-sided and the jet after interaction completely stops and forms a bubble inflating laterally which is unlike previous cases of minor deviation or loss of collimation. Since the nature of radio jet-ISM coupling is poorly understood so far, more discovery of objects like RAD12 will be important to the understanding of galaxy evolution through merger and AGN feedback.
Thanks to the data of the WISE all-sky survey we discovered that the non-thermal infrared emission of blazars, the largest population of associated γ-ray sources, has peculiar spectral properties. Here we provide a summary of all results achieved on the infrared–γ-ray connection. We also show results on the latest statistical analysis of the tight correlation between the mid-infrared colors and the γ-ray spectral index for Fermi blazars, a connection that links both emitted powers and spectral shapes of particles accelerated in blazar jets over ten decades in frequency of the electromagnetic spectrum. Finally, we outline all developments performed in the last decade achieved using the infrared– γ-ray connection to discover hundreds of new blazars within the sample of unidentified γ-ray sources thanks to optical spectroscopic observations.
We present the results of the gamma-ray flux distribution analysis on 145 gamma-ray bright blazars observed by Fermi-LAT. For the gamma-ray flux distribution, we applied a log-normal distribution to discuss the nature of the high-energy emission processes of blazars and a power-law distribution convolved with a Poisson distribution to investigate the implications of gamma-ray bright blazars for neutrino emission. Both distributions can represent the observed flux distributions as well. The leptonic models, which give the physical relationship between neutrinos and gamma rays, indicate that the flaring contribution to the neutrino emission can be dominant for the power-law index less than ∼2.5. From the power-law distribution analysis, we found that the power-law index < 2.5 accounts for the 82 % blazars. This result suggests that the flaring contribution of blazars is dominant for high-energy neutrino emission.
In this work, we investigate the formation and early evolution phase of X-shaped radio galaxies using the Back-flow model. We show how the X-like winged morphology evolves over time in a tri-axial ambient medium, naturally. At this early stage of formation, we demonstrated that both the pair of jet lobes are actively pushing the ambient material out of their path of propagation, forming (X-ray) cavities that are surrounded by a shocked shell (X-ray bright rims) of swept materials. We also noticed how turbulent the wing is in comparison to the active lobe, generating sites of random shocks, indicating that the wings are not passively evolving structures. This study demonstrated that the ambiguous morphology observed in jets is also imprinted over the ambient medium, providing an alternative perspective in understanding the underlying physical process causing such ambiguities. Finally, we indicate that shearing instabilities cause mixing of ambient material at the shearing interface.
The Fermi γ-ray telescope has detected 6658 sources, with 1845 of them remaining unidentified. We show that polarimetry of γ-ray fields is a powerful asset in the hunt of active galactic nuclei (AGN) as potential optical counterparts for γ-ray sources. We have studied an unidentified Fermi field (3FGL J0221.2+2518) and found a previously-unknown highly-polarized extragalactic object as a potential optical counterpart within the 1-sigma error ellipse of the corresponding γ-ray source. Based on a collection of data, we find that it most probably is a composite object: a star-forming galaxy accompanied by AGN. PASIPHAE is a large polarimetric experiment which will measure the polarisation of sources away from the galactic plane. This will provide an excellent opportunity to study hundreds of unidentified γ-ray sources and unveil potential optical counterparts, using polarimetry.
Despite the fact that jets from black holes were first understood to exist over 40 years ago, we are still in ignorance about many primary aspects of these systems – including the radiation mechanism at high energies, the particle makeup of the jets, and how particles are accelerated, possibly to energies as high as 100 TeV and hundreds of kpc from the central engine. We focus in particular on the discovery (and mystery) of strong X-ray emission from radio jets on kpc-scales, enabled by the unequaled high resolution of the Chandra X-ray observatory. We review the main evidence for and against the viable models to explain this X-ray emission over the last 20 years. Finally, we present results of a recent study on the X-ray variability of kpc-scale jets, where we find evidence that between 30-100% of the X-ray jet population is variable at the tens-of-percent level. The short (∼years) variability timescale is incompatible with the IC/CMB model for the X-rays and implies extremely small structures embedded within the kpc-scale jet, and thus requires a reconsideration of many assumptions about jet structure and dynamics.
Studying blazar radio variability on timescales ranging from months to years provides information on the sub-parsec-scale structures of the jets, and the physics of the central active galactic nuclei. In this study, we focus on the radio variability of 1158 blazars observed at 15 GHz through the Owens Valley Radio Observatory Blazar Monitoring Program, where these sources have been observed about twice a week for over a decade. We investigate the dependence of the variability amplitudes and timescales, derived using a simple model fit to the structure function, on the milliarcsecond radio core sizes measured by Very Long Baseline Interferometry. The most compact sources exhibit larger variability amplitudes and shorter variability timescales than the more extended sources; this could be explained by light travel-time effects.
Relativistic jets from supermassive black holes or stellar mass black holes are among the most powerful astrophysical phenomena. Magnetic field plays an important role in the jet launching and propagation, as well as particle acceleration and radiation. Polarimetry is the only way to observe the magnetic field evolution. The recent launch of the Imaging X-ray Polarimetry Explorer (IXPE) has opened up the X-ray polarization window, which has revealed very interesting phenomena for relativistic jets. However, the field of MeV gamma-ray polarimetry remains largely unexplored. This paper aims to summarize key scientific potentials for MeV polarimetry for blazars and gamma-ray bursts (GRBs) from recent theoretical modeling. These predictions, which are closely related to the cosmic ray acceleration, neutrino production, radiation mechanism, and the jet evolution, can be examined by future MeV polarimeters, such as the Compton Spectrometer and Imager (COSI), the LargE Area burst Polarimeter (LEAP), and the All-sky Medium-Energy Gamma-ray Observatory eXplorer (AMEGO-X).
Recent theoretical considerations and observational evidence evince the spine-sheath morphology of relativistic jets emitted from active galactic nuclei (AGNs) or gamma-ray bursts (GRBs). The resulting shear boundary layers (SBLs) are likely to be an avenue for particle acceleration in relativistic jets. The effect of radiation drag on radiating particles has yet to be addressed in most studies of particle acceleration at shear boundary layers, even though radiative cooling may considerably affect particle dynamics. By using particle-in-cell simulations, we study the effects of inverse Compton cooling on particle dynamics and emerging particle spectra.
In recent years, evidence has started piling up that some high-energy cosmic neutrinos can be associated with blazars in flaring states. On 2022 February 26, a new blazar-neutrino coincidence was reported: the track-like neutrino event IC220225A detected by IceCube is spatially coincident with the flat-spectrum radio quasar PKS 0215+015. Like previous associations, this source was found to be in a high optical and γ-ray state. Moreover, the source showed a bright radio outburst, which substantially increases the probability of a true physical association. We have performed six observations with the VLBA shortly after the neutrino event with a monthly cadence and are monitoring the source with the Effelsberg 100m-Telescope, and with the Australia Compact Telescope Array. Here, we present first results on the contemporary parsec-scale jet structure of PKS 0215+015 in total intensity and polarization to constrain possible physical processes leading to neutrino emission in blazars.
We re-evaluate the outer edge of orbital stability for possible exomoons orbiting the radial velocity planet discovered in the HD 23079 system. In this system, a solar-type star hosts a Jupiter-mass planet in a nearly circular orbit in the outer stellar habitable zone. The outer stability limit of exomoons is deduced using N-body and tidal migration simulations considering a large range of initial conditions, encompassing both prograde and retrograde orbits. In particular, we extend previous works by evaluating many values in the satellite mean anomaly to identify and exclude regions of quasi-stability. Future observations of this system can make use of our results through a scale factor relative to the currently measured minimum mass. Using a constant time lag tidal model (Hut 1981), we find that plausible tidal interactions within the system are insufficient to induce significant outward migration toward the theoretical stability limit. While current technologies are incapable of detecting exomoons in this system, we comment on the detectability of putative moons through Doppler monitoring within direct imaging observations in view of future research capacities.
One of the principal systematic constraints on the Epoch of Reionisation (EoR) experiment is the accuracy of the foreground calibration model. Recent results have shown that highly accurate models of extended foreground sources, and including models for sources in both the primary beam and its sidelobes, are necessary for reducing foreground power. To improve the accuracy of the source models for the EoR fields observed by the Murchison Widefield Array (MWA), we conducted the MWA Long Baseline Epoch of Reionisation Survey (LoBES). This survey consists of multi-frequency observations of the main MWA EoR fields and their eight neighbouring fields using the MWA Phase II extended array. We present the results of the first half of this survey centred on the MWA EoR0 observing field (centred at RA (J2000)
$0^\mathrm{h}$
, Dec (J2000)
$-27^{\circ}$
). This half of the survey covers an area of 3 069 degrees
$^2$
, with an average rms of 2.1 mJy beam–1. The resulting catalogue contains a total of 80 824 sources, with 16 separate spectral measurements between 100 and 230 MHz, and spectral modelling for 78
$\%$
of these sources. Over this region we estimate that the catalogue is 90
$\%$
complete at 32 mJy, and 70
$\%$
complete at 10.5 mJy. The overall normalised source counts are found to be in good agreement with previous low-frequency surveys at similar sensitivities. Testing the performance of the new source models we measure lower residual rms values for peeled sources, particularly for extended sources, in a set of MWA Phase I data. The 2-dimensional power spectrum of these data residuals also show improvement on small angular scales—consistent with the better angular resolution of the LoBES catalogue. It is clear that the LoBES sky models improve upon the current sky model used by the Australian MWA EoR group for the EoR0 field.
Next-generation spectro-polarimetric broadband surveys will probe cosmic magnetic fields in unprecedented detail, using the magneto-optical effect known as Faraday rotation. However, non-parametric methods such as RMCLEAN can introduce non-observable linearly polarised flux into a fitted model at negative wavelengths squared. This leads to Faraday rotation structures that are consistent with the observed data, but would be impossible or difficult to measure. We construct a convex non-parametric QU-fitting algorithm to constrain the flux at negative wavelengths squared to be zero. This allows the algorithm to recover structures that are limited in complexity to the observable region in wavelength squared. We verify this approach on simulated broadband data sets where we show that it has a lower root mean square error and that it can change the scientific conclusions for real observations. We advise using this prior in next-generation broadband surveys that aim to uncover complex Faraday depth structures. We provide a public Python implementation of the algorithm at https://github.com/Luke-Pratley/Faraday-Dreams.
We explore the effect of anisotropic wind driving on the properties of accretion onto black holes (BHs) in close binaries. We specifically focus on line-driven winds, which are common in high-mass X-ray binaries (HMXBs). In close binary systems, the tidal force from the companion star can modify the wind structure in two different ways. One is the reduction of wind terminal velocity due to the weaker effective surface gravity. The other is the reduction in mass flux due to gravity darkening (GD). We incorporate these effects into the so-called CAK theory in a simple way and investigate the wind flow around the accretor on the orbital scale. We find that a focused accretion stream is naturally formed when the Roche lobe filling factor is
${\gtrsim}0.8$
–0.9, analogous to that of wind Roche lobe overflow, but only when the velocity reduction is taken into account. The formation of a stream is necessary to bring in sufficient angular momentum to form an accretion disc around the BH. GD effects reduce the amount of accreted angular momentum, but not enough to prevent the formation of a disc. Based on these results, we expect there to be a discrete step in the observability of HMXBs depending on whether the donor Roche lobe filling factor is below or above
${\sim}$
0.8–0.9.
In this era of spatially resolved observations of planet-forming disks with Atacama Large Millimeter Array (ALMA) and large ground-based telescopes such as the Very Large Telescope (VLT), Keck, and Subaru, we still lack statistically relevant information on the quantity and composition of the material that is building the planets, such as the total disk gas mass, the ice content of dust, and the state of water in planetesimals. SPace Infrared telescope for Cosmology and Astrophysics (SPICA) is an infrared space mission concept developed jointly by Japan Aerospace Exploration Agency (JAXA) and European Space Agency (ESA) to address these questions. The key unique capabilities of SPICA that enable this research are (1) the wide spectral coverage
$10{-}220\,\mu\mathrm{m}$
, (2) the high line detection sensitivity of
$(1{-}2) \times 10^{-19}\,\mathrm{W\,m}^{-2}$
with
$R \sim 2\,000{-}5\,000$
in the far-IR (SAFARI), and
$10^{-20}\,\mathrm{W\,m}^{-2}$
with
$R \sim 29\,000$
in the mid-IR (SPICA Mid-infrared Instrument (SMI), spectrally resolving line profiles), (3) the high far-IR continuum sensitivity of 0.45 mJy (SAFARI), and (4) the observing efficiency for point source surveys. This paper details how mid- to far-IR infrared spectra will be unique in measuring the gas masses and water/ice content of disks and how these quantities evolve during the planet-forming period. These observations will clarify the crucial transition when disks exhaust their primordial gas and further planet formation requires secondary gas produced from planetesimals. The high spectral resolution mid-IR is also unique for determining the location of the snowline dividing the rocky and icy mass reservoirs within the disk and how the divide evolves during the build-up of planetary systems. Infrared spectroscopy (mid- to far-IR) of key solid-state bands is crucial for assessing whether extensive radial mixing, which is part of our Solar System history, is a general process occurring in most planetary systems and whether extrasolar planetesimals are similar to our Solar System comets/asteroids. We demonstrate that the SPICA mission concept would allow us to achieve the above ambitious science goals through large surveys of several hundred disks within
$\sim\!2.5$
months of observing time.
Galaxy clusters have been found to host a range of diffuse, non-thermal emission components, generally with steep, power law spectra. In this work we report on the detection and follow-up of radio halos, relics, remnant radio galaxies, and other fossil radio plasmas in Southern Sky galaxy clusters using the Murchison Widefield Array and the Australian Square Kilometre Array Pathfinder. We make use of the frequency coverage between the two radio interferometers—from 88 to
$\sim\!900$
MHz—to characterise the integrated spectra of these sources within this frequency range. Highlights from the sample include the detection of a double relic system in Abell 3186, a mini-halo in RXC J0137.2–0912, a candidate halo and relic in Abell 3399, and a complex multi-episodic head-tail radio galaxy in Abell 3164. We compare this selection of sources and candidates to the literature sample, finding sources consistent with established radio power–cluster mass scaling relations. Finally, we use the low-frequency integrated spectral index,
$\alpha$
(
$S_v \propto v^\alpha$
), of the detected sample of cluster remnants and fossil sources to compare with samples of known halos, relics, remnants and fossils to investigate a possible link between their electron populations. We find the distributions of
$\alpha$
to be consistent with relic and halo emission generated by seed electrons that originated in fossil or remnant sources. However, the present sample sizes are insufficient to rule out other scenarios.
The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to
$\sim\!5$
yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of
$\sim\!162$
h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of
$0.24\ \mathrm{mJy\ beam}^{-1}$
and angular resolution of
$12-20$
arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified.