We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Astrometric very long baseline interferometry (VLBI) observations of stellar masers are an excellent method to determine distances and proper motions in our Galaxy. Large maser astrometry surveys, the Bar and Spiral Structure Legacy survey and the VLBI Exploration for Radio Astrometry, allowed astronomers to determine fundamental Galactic parameters, such as the rotation curve and the distance to the Galactic centre, as well as to trace the spiral arms. In this review, the results of these surveys will be summarised and compared with astrometric measurements using other methods.
The BEBOP (Binaries Escorted By Orbiting Planets) survey is a search for circumbinary planets using the radial velocity spectrographs HARPS and SOPHIE, currently focusing on single-lined binaries with a mass ratio < 0.3. Circumbinary systems are an important testing ground for planet formation theories as the dynamically complex influence of the binary makes planet formation and survival more difficult. Here we present the results of the survey so far including: confirmed planets such as BEBOP-1c the first circumbinary planet detected in radial velocity; the status of our observations; and preliminary occurrence rates. We compare the early results of the radial velocity survey to the population of circumbinary planets discovered in transit, and suggest that there may be a population of inflated planets close to the inner binary which are detectable in transit but more difficult in radial velocity. Using time-lag tidal theory, we show that this inflation is unlikely caused by tides.
While unobscured and radio-quiet active galactic nuclei are regularly being found at redshifts
$z > 6$
, their obscured and radio-loud counterparts remain elusive. We build upon our successful pilot study, presenting a new sample of low-frequency-selected candidate high-redshift radio galaxies (HzRGs) over a sky area 20 times larger. We have refined our selection technique, in which we select sources with curved radio spectra between 72–231 MHz from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. In combination with the requirements that our GLEAM-selected HzRG candidates have compact radio morphologies and be undetected in near-infrared
$K_{\rm s}$
-band imaging from the Visible and Infrared Survey Telescope for Astronomy Kilo-degree Infrared Galaxy (VIKING) survey, we find 51 new candidate HzRGs over a sky area of approximately
$1200\ \mathrm{deg}^2$
. Our sample also includes two sources from the pilot study: the second-most distant radio galaxy currently known, at
$z=5.55$
, with another source potentially at
$z \sim 8$
. We present our refined selection technique and analyse the properties of the sample. We model the broadband radio spectra between 74 MHz and 9 GHz by supplementing the GLEAM data with both publicly available data and new observations from the Australia Telescope Compact Array at 5.5 and 9 GHz. In addition, deep
$K_{\rm s}$
-band imaging from the High-Acuity Widefield K-band Imager (HAWK-I) on the Very Large Telescope and from the Southern Herschel Astrophysical Terahertz Large Area Survey Regions
$K_{\rm s}$
-band Survey (SHARKS) is presented for five sources. We discuss the prospects of finding very distant radio galaxies in our sample, potentially within the epoch of reionisation at
$z \gtrsim 6.5$
.
The three-body problem is famously chaotic, with no closed-form analytical solutions. However, hierarchical systems of three or more bodies can be stable over indefinite timescales. A system is considered hierarchical if the bodies can be divided into separate two-body orbits with distinct time and length scales, such that one orbit is only mildly affected by the gravitation of the other bodies. Previous work has mapped the stability of such systems at varying resolutions over a limited range of parameters, and attempts have been made to derive analytic and semi-analytic stability boundary fits to explain the observed phenomena. Certain regimes are understood relatively well. However, there are large regions of the parameter space which remain unmapped, and for which the stability boundary is poorly understood. We present a comprehensive numerical study of the stability boundary of hierarchical triples over a range of initial parameters. Specifically, we consider the mass ratio of the inner binary to the outer third body (
$q_\mathrm{out}$
), mutual inclination (i), initial mean anomaly and eccentricity of both the inner and outer binaries (
$e_\mathrm{in}$
and
$e_\mathrm{out}$
respectively). We fit the dependence of the stability boundary on
$q_\mathrm{ out}$
as a threshold on the ratio of the inner binary’s semi-major axis to the outer binary’s pericentre separation
$a_\mathrm{in}/R_\mathrm{p, out} \leq 10^{-0.6 + 0.04q_\mathrm{out}}q_\mathrm{out}^{0.32+0.1q_\mathrm{out}}$
for coplanar prograde systems. We develop an additional factor to account for mutual inclination. The resulting fit predicts the stability of
$10^4$
orbits randomly initialised close to the stability boundary with
$87.7\%$
accuracy.
We present the Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) Pilot Phase I Hi kinematic models. This first data release consists of Hi observations of three fields in the direction of the Hydra and Norma clusters, and the NGC 4636 galaxy group. In this paper, we describe how we generate and publicly release flat-disk tilted-ring kinematic models for 109/592 unique Hi detections in these fields. The modelling method adopted here—which we call the WALLABY Kinematic Analysis Proto-Pipeline (WKAPP) and for which the corresponding scripts are also publicly available—consists of combining results from the homogeneous application of the FAT and 3DBarolo algorithms to the subset of 209 detections with sufficient resolution and
$S/N$
in order to generate optimised model parameters and uncertainties. The 109 models presented here tend to be gas rich detections resolved by at least 3–4 synthesised beams across their major axes, but there is no obvious environmental bias in the modelling. The data release described here is the first step towards the derivation of similar products for thousands of spatially resolved WALLABY detections via a dedicated kinematic pipeline. Such a large publicly available and homogeneously analysed dataset will be a powerful legacy product that that will enable a wide range of scientific studies.
We present WALLABY pilot data release 1, the first public release of H i pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three
$60\,\mathrm{deg}^{2}$
regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the redshift range of
$z \lesssim 0.08$
. The source catalogue, images and spectra of nearly 600 extragalactic H i detections and kinematic models for 109 spatially resolved galaxies are available. As the pilot survey targeted regions containing nearby group and cluster environments, the median redshift of the sample of
$z \approx 0.014$
is relatively low compared to the full WALLABY survey. The median galaxy H i mass is
$2.3 \times 10^{9}\,{\rm M}_{{\odot}}$
. The target noise level of
$1.6\,\mathrm{mJy}$
per 30′′ beam and
$18.5\,\mathrm{kHz}$
channel translates into a
$5 \sigma$
H i mass sensitivity for point sources of about
$5.2 \times 10^{8} \, (D_{\rm L} / \mathrm{100\,Mpc})^{2} \, {\rm M}_{{\odot}}$
across 50 spectral channels (
${\approx} 200\,\mathrm{km \, s}^{-1}$
) and a
$5 \sigma$
H i column density sensitivity of about
$8.6 \times 10^{19} \, (1 + z)^{4}\,\mathrm{cm}^{-2}$
across 5 channels (
${\approx} 20\,\mathrm{km \, s}^{-1}$
) for emission filling the 30′′ beam. As expected for a pilot survey, several technical issues and artefacts are still affecting the data quality. Most notably, there are systematic flux errors of up to several 10% caused by uncertainties about the exact size and shape of each of the primary beams as well as the presence of sidelobes due to the finite deconvolution threshold. In addition, artefacts such as residual continuum emission and bandpass ripples have affected some of the data. The pilot survey has been highly successful in uncovering such technical problems, most of which are expected to be addressed and rectified before the start of the full WALLABY survey.
The formation of the first stars and galaxies during ‘Cosmic Dawn’ is thought to have imparted a faint signal onto the 21-cm spin temperature from atomic Hydrogen gas in the early Universe. Observationally, an absorption feature should be measurable as a frequency dependence in the sky-averaged (i.e. global) temperature at meter wavelengths. This signal should be separable from the smooth—but orders of magnitude brighter—foregrounds by jointly fitting a log-polynomial and absorption trough to radiometer spectra. A majority of approaches to measure the global 21-cm signal use radiometer systems on dipole-like antennas. Here, we argue that beamforming-based methods may allow radio arrays to measure the global 21-cm signal. We simulate an end-to-end drift-scan observation of the radio sky at 50–100 MHz using a zenith-phased array, and find that the complex sidelobe structure introduces a significant frequency-dependent systematic. However, the
$\lambda/D$
evolution of the beam width with frequency does not confound detection. We conclude that a beamformed array with a median sidelobe level
${\sim}-50$
dB may offer an alternative method to measure the global 21-cm signal. This level is achievable by arrays with
$O(10^5)$
antennas.
We presented the first photometric and orbital period investigations for four W Ursae Majoris-type binaries: V473 And, V805 And, LQ Com, and EG CVn. The photometric solutions suggested that V805 And and LQ Com are two total-eclipse contact binaries, while V473 And and EG CVn are partial-eclipse ones. V473 And and LQ Com belong to the A-subtype contact binaries, while V805 And and EG CVn belong to the W subtype. The O’Connell effects found in the light curves of V805 And, LQ Com, and EG CVn can be interpreted as a result of a cool spot on the surface of their less massive and hotter primary components. Based on two different methods, the absolute physical parameters were properly determined. Combining the eclipse timings derived from our observations and survey’s data with those collected from literature, we investigated their orbital period variations. The results show that the orbital periods of V473 And, V805 And, and EG CVn are undergoing a secular decrease/increase superposed a periodic variation, while LQ Com exhibits a possible cyclic period variation with a small amplitude. The secular period changes are caused mainly by the mass transfer between two components, while the cyclic period oscillations may be interpreted as the results of either the light-time effect due to the third body or the cyclic magnetic activity. Finally, we made a statistical investigation for nearly 200 contact binaries with reliable physical parameters. The statistical results suggested that the W-subtype systems are more evolved than the A-subtype ones. Furthermore, the evolutionary direction of A-subtype into W-subtype systems is also discussed. The opposite evolutionary direction seems to be unlikely because it requires an increase of the total mass, the orbital angular momentum, and the temperature differences between two components of a binary system.
We present the pulsar_spectra software repository, an open-source pulsar flux density catalogue and automated spectral fitting software that finds the best spectral model and produces publication-quality plots. The python-based software includes features that enable users in the astronomical community to add newly published spectral measurements to the catalogue as they become available. The spectral fitting software is an implementation of the method described in Jankowski et al. (2018, MNRAS, 473, 4436) which uses robust statistical methods to decide on the best-fitting model for individual pulsar spectra. pulsar_spectra is motivated by the need for a centralised repository for pulsar flux density measurements to make published measurements more accessible to the astronomical community and provide a suite of tools for measuring spectra.
The shape of emission lines in the optical spectra of star-forming galaxies reveals the kinematics of the diffuse gaseous component. We analyse the shape of prominent emission lines in a sample of
$\sim$
53000 star-forming galaxies from the Sloan Digital Sky Survey, focusing on departures from gaussianity. Departures from a single gaussian profile allow us to probe the motion of gas and to assess the role of outflows. The sample is divided into groups according to their stellar velocity dispersion and star formation rate (SFR). The spectra within each group are stacked to improve the signal-to-noise ratio of the emission lines, to remove individual signatures, and to enhance the effect of SFR on the shapes of the emission lines. The moments of the emission lines, including kurtosis and skewness, are determined. We find that most of the emission lines in strong star-forming systems unequivocally feature negative kurtosis. This signature is present in
$\mathrm{H}\unicode{x03B2}$
,
$\mathrm{H}\unicode{x03B1}$
, [N ii], and [S ii] in massive galaxies with high SFRs. We attribute it as evidence of radial outflows of ionised gas driven by the star formation of the galaxies. Also, most of the emission lines in low-mass systems with high SFRs feature negative skewness, and we interpret it as evidence of dust obscuration in the galactic disk. These signatures are however absent in the [O iii] line, which is believed to trace a different gas component. The observed trend is significantly stronger in face-on galaxies, indicating that star formation drives the outflows along the galactic rotation axis, presumably the path of least resistance. The data suggest that outflows driven by star formation exert accumulated impacts on the interstellar medium, and the outflow signature is more evident in older galaxies as they have experienced a longer total duration of star formation.
We present the pulse arrival times and high-precision dispersion measure estimates for 14 millisecond pulsars observed simultaneously in the 300
$-$
500 MHz and 1260
$-$
1460 MHz frequency bands using the upgraded Giant Metrewave Radio Telescope. The data spans over a baseline of 3.5 years (2018-2021), and is the first official data release made available by the Indian Pulsar Timing Array collaboration. This data release presents a unique opportunity for investigating the interstellar medium effects at low radio frequencies and their impact on the timing precision of pulsar timing array experiments. In addition to the dispersion measure time series and pulse arrival times obtained using both narrowband and wideband timing techniques, we also present the dispersion measure structure function analysis for selected pulsars. Our ongoing investigations regarding the frequency dependence of dispersion measures have been discussed. Based on the preliminary analysis for five millisecond pulsars, we do not find any conclusive evidence of chromaticity in dispersion measures. Data from regular simultaneous two-frequency observations are presented for the first time in this work. This distinctive feature leads us to the highest precision dispersion measure estimates obtained so far for a subset of our sample. Simultaneous multi-band upgraded Giant Metrewave Radio Telescope observations in 300
$-$
500 MHz and 1260
$-$
1460 MHz are crucial for high-precision dispersion measure estimation and for the prospect of expanding the overall frequency coverage upon the combination of data from the various Pulsar Timing Array consortia in the near future. Parts of the data presented in this work are expected to be incorporated into the upcoming third data release of the International Pulsar Timing Array.
We present a set of peculiar radio sources detected using an unsupervised machine learning method. We use data from the Australian Square Kilometre Array Pathfinder (ASKAP) telescope to train a self-organizing map (SOM). The radio maps from three ASKAP surveys, Evolutionary Map of Universe pilot survey (EMU-PS), Deep Investigation of Neutral Gas Origins pilot survey (DINGO), and Survey With ASKAP of GAMA-09 + X-ray (SWAG-X), are used to search for the rarest or unknown radio morphologies. We use an extension of the SOM algorithm that implements rotation and flipping invariance on astronomical sources. The SOM is trained using the images of all ‘complex’ radio sources in the EMU-PS which we define as all sources catalogued as ‘multi-component’. The trained SOM is then used to estimate a similarity score for complex sources in all surveys. We select 0.5% of the sources that are most complex according to the similarity metric and visually examine them to find the rarest radio morphologies. Among these, we find two new odd radio circle (ORC) candidates and five other peculiar morphologies. We discuss multiwavelength properties and the optical/infrared counterparts of selected peculiar sources. In addition, we present examples of conventional radio morphologies including: diffuse emission from galaxy clusters, and resolved, bent-tailed, and FR-I and FR-II type radio galaxies. We discuss the overdense environment that may be the reason behind the circular shape of ORC candidates.
We demonstrate the effectiveness of a Bayesian evidence -based analysis for diagnosing and disentangling the sky-averaged 21-cm signal from instrumental systematic effects. As a case study, we consider a simulated REACH pipeline with an injected systematic. We demonstrate that very poor performance or erroneous signal recovery is achieved if the systematic remains unmodelled. These effects include sky-averaged 21-cm posterior estimates resembling a very deep or wide signal. However, when including parameterised models of the systematic, the signal recovery is dramatically improved in performance. Most importantly, a Bayesian evidence-based model comparison is capable of determining whether or not such a systematic model is needed as the true underlying generative model of an experimental dataset is in principle unknown. We, therefore, advocate a pipeline capable of testing a variety of potential systematic errors with the Bayesian evidence acting as the mechanism for detecting their presence.
A pilot project has been proceeded to map
$1\, \textrm{deg}^2$
on the Galactic plane for radio recombination lines (RRLs) using the Five-hundred-metre Aperture Spherical Telescope (FAST). The motivation is to verify the techniques and reliabilities for a large-scale Galactic plane RRL survey with FAST aiming to investigate the ionised environment in the Galaxy. The data shows that the bandpass of the FAST 19 beam L-band is severely affected by radio frequency interferences and standing wave ripples, which can hardly be corrected by traditional low order polynomials. In this paper, we investigate a series of penalised least square (PLS) based baseline correction methods for radio astronomical spectra that usually contain weak signals with high level of noise. Three promising penalised least squares based methods, AsLS, arPLS, and asPLS are evaluated. Adopting their advantages, a modified method named rrlPLS is developed to optimise the baseline fitting to our RRL spectra. To check their effectiveness, the four methods are tested by simulations and further verified using observed data sets. It turns out that the rrlPLS method, with optimised parameter
$\lambda=2\times10^8$
, reveals the most sensitive and reliable emission features in the RRL map. By injecting artificial line profiles into the real data cube, a further evaluation of profile distortion is conducted for rrlPLS. Comparing to simulated signals, the processed lines with low signal-to-noise ratio are less affected, of which the uncertainties are mainly caused by the rms noise. The rrlPLS method will be applied for baseline correction in future data processing pipeline of FAST RRL survey. Configured with proper parameters, the rrlPLS technique verified in this work may also be used for other spectroscopy projects.
We present analysis of the far ultraviolet (FUV) emission of sources in the central region of the Coma cluster (
$z=0.023$
) using the data taken by the UVIT aboard the multi-wavelength satellite mission AstroSat. We find a good correlation between the UVIT FUV flux and the fluxes in both wavebands of the Galex mission, for the common sources. We detect stars and galaxies, amongst which the brightest (
$r \lesssim 17$
mag) galaxies in the field of view are mostly members of the Coma cluster. We also detect three quasars (
$z = 0.38, 0.51, 2.31$
), one of which is likely the farthest object observed by the UVIT so far. In almost all the optical and UV colour-colour and colour-magnitude planes explored in this work, the Coma galaxies, other galaxies and bright stars could be separately identified, but the fainter stars and quasars often coincide with the faint galaxies. We have also investigated galaxies with unusual FUV morphology which are likely to be galaxies experiencing ram-pressure stripping in the cluster. Amongst others, two confirmed cluster members which were not investigated in the literature earlier, have been found to show unusual FUV emission. All the distorted sources are likely to have fallen into the cluster recently, and hence have not virialised yet. A subset of our data have optical spectroscopic information available from the archives. For these sources (
${\sim} 10\%$
of the sample), we find that 17 galaxies identify as star-forming, 18 as composite and 13 as host galaxies for active galactic nuclei, respectively on the emission-line diagnostic diagram.
It is argued that the new morphological and spectral information gleaned from the recently published LoFAR Two metre Sky Survey data release 2 (LoTSS-2 at 144 MHz) observations of the cluster Abell 980 (A980), in combination with its existing GMRT and VLA observations at higher frequencies, provide the much-needed evidence to strengthen the proposal that the cluster’s radio emission comes mainly from two double radio sources, both produced by the brightest cluster galaxy (BCG) in two major episodes of jet activity. The two radio lobes left from the previous activity have become diffuse and developed an ultra-steep radio spectrum while rising buoyantly through the confining hot intra-cluster medium (ICM) and, concomitantly, the host galaxy has drifted to the cluster centre and entered a new active phase manifested by a coinciding younger double radio source. The new observational results and arguments presented here bolster the case that the old and young double radio sources in A980 conjointly represent a ‘double-double’ radio galaxy whose two lobe pairs have lost colinearity due to the (lateral) drift of their parent galaxy, making this system by far the most plausible case of a ‘Detached-Double-Double Radio Galaxy’ (dDDRG).
The redshifted cosmological 21-cm signal emitted by neutral hydrogen during the first billion years of the universe is much fainter relative to other galactic and extragalactic radio emissions, posing a great challenge towards detection of the signal. Therefore, precise instrumental calibration is a vital prerequisite for the success of radio interferometers such as the Murchison Widefield Array (MWA), which aim for a 21-cm detection. Over the previous years, novel calibration techniques targeting the power spectrum paradigm of EoR science have been actively researched and where possible implemented. Some of these improvements, for the MWA, include the accuracy of sky models used in calibration and the treatment of ionospheric effects, both of which introduce unwanted contamination to the EoR window. Despite sophisticated non-traditional calibration algorithms being continuously developed over the years to incorporate these methods, the large datasets needed for EoR measurements require high computational costs, leading to trade-offs that impede making use of these new tools to maximum benefit. Using recently acquired computation resources for the MWA, we test the full capabilities of the state-of-the-art calibration techniques available for the MWA EoR project, with a focus on both direction-dependent and direction-independent calibration. Specifically, we investigate improvements that can be made in the vital calibration stages of sky modelling, ionospheric correction, and compact source foreground subtraction as applied in the hybrid foreground mitigation approach (one that combines both foreground subtraction and avoidance). Additionally, we investigate a method of ionospheric correction using interpolated ionospheric phase screens and assess its performance in the power spectrum space. Overall, we identify a refined RTS calibration configuration that leads to an at least 2 factor reduction of the EoR window power contamination at the
$0.1 \; \textrm{hMpc}^{-1}$
scale. The improvement marks a step further towards detecting the 21-cm signal using the MWA and the forthcoming SKA low telescope.