We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We explore some foundational issues in the development of a theory of intensional semantics, in which program denotations may convey information about computation strategy in addition to the usual extensional information. Beginning with an “extensional” category C, whose morphisms we can think of as functions of some kind, we model a notion of computation using a comonad with certain extra structure and we regard the Kleisli category of the comonad as an intensional category. An intensional morphism, or algorithm, can be thought of as a function from computations to values, or as a function from values to values equipped with a computation strategy. Under certain rather general assumptions the underlying category C can be recovered from the Kleisli category by taking a quotient, derived from a congruence relation that we call extensional equivalence. We then focus on the case where the underlying category is cartesian closed. Under further assumptions the Kleisli category satisfies a weak form of cartesian closure: application morphisms exist, currying and uncurrying of morphisms make sense, and the diagram for exponentiation commutes up to extensional equivalence. When the underlying category is an ordered category we identify conditions under which the exponentiation diagram commutes up to an inequality. We illustrate these ideas and results by introducing some notions of computation on domains and by discussing the properties of the corresponding categories of algorithms on domains.
Introduction
Most existing denotational semantic treatments of programming languages are extensional, in that they abstract away from computational details and ascribe essentially extensional meanings to programs.
There has been considerable recent interest in the use of algebraic methodologies to define and elucidate constructions in fixed point semantics [B], [FMRS], [Mu2]. In this paper we present recent results utilizing categorical methods, particularly strong monads, algebras and dinatural transformations to build general fixed point operators. The approach throughout is to evolve from the specific to the general case by eventually discarding the particulars of domains and continuous functions so often used in this setting. Instead we rely upon the structure of strong monads and algebras to provide a general algebraic framework for this discussion. This framework should provide a springboard for further investigations into other issues in semantics.
By way of background, the issues raised in this paper find their origins in several different sources. In [Mu2] the formal role of iteration in a cartesian closed category (ccc) with fixed points was investigated. This was motivated by the observation in [H-P] that the presence of a natural number object (nno) was inconsistent with ccc's and fixed points. This author introduced the notion of onno (ordered nno) which in semantic categories played a role as iterator and was precisely the initial T-algebra for T the strong lift monad. Using the onno a factorization of fix was produced and further it was shown fix was in fact a dinatural transformation. This was accomplished by avoiding the traditional projection/embedding approach to semantics. Similar results were extended to order-enriched and effective settings as well.
Turning to monads, their role in computation is not new. In particular, it was emphasized early in the development of topos theory that the partial map classifier was a strong monad.
Domain theoretic understanding of databases as elements of powerdomains is modified to allow multisets of records instead of sets. This is related to geometric theories and classifying toposes, and it is shown that algebraic base domains lead to algebraic categories of models in two cases analogous to the lower (Hoare) powerdomain and Gunter's mixed powerdomain.
Terminology
Throughout this paper, “domain” means algebraic poset – not necessarily with bottom, nor second countable. The information system theoretic account of algebraic posets fits very neatly with powerdomain constructions. Following Vickers [90], it may be that essentially the same methods work for continuous posets; but we defer treating those until we have a better understanding of the necessary generalizations to topos theory.
More concretely, a domain is a preorder (information system) (D, ⊆) of tokens, and associated with it are an algebraic poset pt D of points (ideals of D; one would normally think of pt D as the domain), and a frame ΩD of opens (upper closed subsets of D; ΩD is isomorphic to the Scott topology on pt D).
“Topos” always means “Grothendieck topos”, and not “elementary topos” morphisms between toposes are understood to be geometric morphisms.
S, italicized, denotes the category of sets.
We shall follow, usually without comment, the notation of Vickers [89], which can be taken as our standard reference for the topological and localic notions used here.
In [6] one finds a general method to describe various (typed) λ-calculi categorically. Here we give an elementary formulation in terms of indexed categories of the outcome of applying this method to the simply typed λ-calculus. It yields a categorical structure in which one can describe exponent types without assuming cartesian product types. Specializing to the “monoid” case where one has only one type yields a categorical description of the untyped λ-calculus.
In the literature there are two categorical notions for the untyped λ-calculus: one by Obtulowicz and one by Scott & Koymans. The notion we arrive at subsumes both of these; it can be seen as a mild generalization of the first one.
Introduction
The straightforward way to describe the simply typed λ-calculus (denoted here by λ1) categorically is in terms of cartesian closed categories (CCC's), see [10]. On the type theoretic side this caused some discomfort, because one commonly uses only exponent types without assuming cartesian product types — let alone unit (i.e. terminal) types. The typical reply from category theory is that one needs cartesian products in order to define exponents. Below we give a categorical description of exponent types without assuming cartesian product types. We do use cartesian products of contexts; these always exist by concatenation. Thus both sides can be satisfied by carefully distinguishing between cartesian products of types and cartesian products of contexts. We introduce an appropriate categorical structure for doing so.
In [6] one can find a general method to describe typed λ-calculi categorically. One of the main organizing principles used there is formulated below. It deserves the status of a slogan.
There are many situations in logic, theoretical computer science, and category theory where two binary operations—one thought of as a (tensor) “product”, the other a “sum”—play a key role, such as in distributive categories and in -autonomous categories. (One can regard these as essentially the AND/OR of traditional logic and the TIMES/PAR of (multiplicative) linear logic, respectively.) In the latter example, however, the distributivity one often finds is conspicuously absent: in this paper we study a “linearisation” of distributivity that is present in this context. We show that this weak distributivity is precisely what is needed to model Gentzen's cut rule (in the absence of other structural rules), and show how it can be strengthened in two natural ways, one to generate full distributivity, and the other to generate -autonomous categories.
Introduction
There are many situations in logic, theoretical computer science, and category theory where two binary operations, “tensor products” (though one may be a “sum”), play a key role. The multiplicative fragment of linear logic is a particularly interesting example as it is a Gentzen style sequent calculus in which the structural rules of contraction, thinning, and (sometimes) exchange are dropped. The fact that these rules are omitted considerably simplifies the derivation of the cut elimination theorem. Furthermore, the proof theory of this fragment is interesting and known [Se89] to correspond to *-autonomous categories as introduced by Ban in [Ba79].
In the study of categories with two tensor products one usually assumes a distributivity condition, particularly in the case when one of these is either the product or sum.
Up to this point, the semantics of the commands is determined by the relation between precondition and postcondition. This point of view is too restricted for the treatment of concurrent programs and reactive systems. The usual example is that of an operating system which is supposed to perform useful tasks without ever reaching a postcondition.
For this purpose, the semantics of commands must be extended by consideration of conditions at certain moments during execution. We do not want to be forced to consider all intermediate states or to formalize sequences of intermediate states. We have chosen the following level of abstraction. To every procedure name h, a predicate z.h is associated. The temporal semantic properties of a command q depend on the values of z.h.x for the procedure calls, say of procedure h in state x, induced by execution of command q. The main properties are ‘always’ and ‘eventually’, which are distinguished by the question whether z.h.x should hold for all induced calls or for at least one induced call. The concept of ‘always’ is related to stability and safety. The concept of ‘eventually’ is related to progress and liveness.
In this chapter, we regard nontermination of simple commands as malfunctioning and nontermination of procedures as potentially useful infinite behaviour. We therefore use wp for the interpretation of simple commands and wlp for procedure calls.
This book is about programs as mathematical objects. We focus on one of the aspects of programs, namely their functionality, their meaning or semantics. Following Dijkstra we express the semantics of a program by the weakest precondition of the program as a function of the postcondition. Of course, programs have other aspects, like syntactic structure, executability and (if they are executable) efficiency. In fact, perhaps surprisingly, for programming methodology it is useful to allow a large class of programs, many of which are not executable but serve as partially implemented specifications.
Weakest preconditions are used to define the meanings of programs in a clean and uniform way, without the need to introduce operational arguments. This formalism allows an effortless incorporation of unbounded nondeterminacy. Now programming methodology poses two questions. The first question is, given a specification, to design a general program that is proved to meet the specification but need not be executable or efficient, and the second question is to transform such a program into a more suitable one that also meets the specification.
We do not address the methodological question how to design, but we concentrate on the mathematical questions concerning semantic properties of programs, semantic equality of programs and the refinement relation between programs. We provide a single formal theory that supports a number of different extensions of the basic theory of computation. The correctness of a program with respect to a specification is for us only one of its semantic properties.
This chapter is devoted to the formal definition of the semantics of sequential composition, unbounded choice and recursion and to the proofs of the properties of commands that were introduced and used in the previous chapters. The semantics of the simple commands is taken for granted, but otherwise the reader should not rely on old knowledge but only use facts that have already been justified in the new setting. At the end of the chapter, the foundations of the previous chapters will be complete.
Some examples of the theory are given in the exercises at the end of the chapter. The text of the chapter has almost no examples. One reason is that the chapters 1, 2 and 3 may be regarded as examples of the theory. On the other hand, every nontrivial example tends to constitute additional theory.
In Section 4.1, we introduce complete lattices and investigate the lattice of the predicate transformers and some important subsets. Section 4.2 contains our version of the theorem of Knaster–Tarski. A syntactic formalism for commands with unbounded choice is introduced in Section 4.3.
Section 4.4 contains the main definition. From the definition on simple commands, the functions wp and wlp are extended to procedure names and command expressions. In Sections 4.5 and 4.6, the healthiness laws, which are postulated for simple commands, are extended to procedure names and command expressions.
In this chapter we fulfil the remaining proof obligations of Chapter 12. Section 13.1 contains a strengthened version of Theorem 4(8), our version of the theorem of Knaster-Tarski. In Section 13.2, we provide the basic set-up, in which we need not yet distinguish between wp and wlp. Section 13.3 contains the construction of the strong preorder and the proofs of rule 12(4) and a variation of rule 12(5). In this way, the proof of the accumulation rule 12(5) is reduced to the verification of two technical conditions: sup-safety (for wp) and inf-safety (for wlp). These conditions comprise the base case of the induction and a continuity property.
In Section 13.4, the base case is reduced to a condition on function abort⊙. Section 13.5 contains the proof for inf-safety. Section 13.6 contains the definition of the set Lia and the proof for sup-safety. In Sections 13.7 and 13.8 we justify the rules for Lia stated in Section 11.2.
It may seem unsatisfactory that, in the presence of unbounded nondeterminacy, computational induction needs such a complicated theory. The examples in Sections 11.7 and 12.4, however, show that the accumulation rules 11(6) and 12(5) need their complicated conditions. Therefore, corresponding complications must occur in the construction or in the proofs.
The purpose of this book is to develop the semantics of imperative sequential programs. One prerequisite for reading is some familiarity with the use of predicates in programming, as exposed for instance in the books [Backhouse 1986], [Dijkstra 1976], or [Gries 1981]. Some mathematical maturity is another prerequisite: we freely use sets, functions, relations, orders, etc. We strive for providing complete proofs. This requires many backward references but, of course, the reader may sometimes prefer to ignore them. Actually, at every assertion the reader is invited to join the game and provide a proof himself.
In every chapter, the formulae are numbered consecutively. For reference to formulae of other chapters we use the convention that i(j) denotes formula (j) of Chapter i.
At the end of almost every chapter we give a number of exercises, grouped according to the latest relevant section. When referring to exercise i.j.k, we mean exercise k of Section i.j. Some exercises are simple tests of the reader's apprehension, while other exercises contain applications and extensions of the main text. For (parts of) exercises marked with ♡ we provide solutions in Chapter 16.
References to the literature are given in the form [X n], for author X and year n, possibly followed by a letter.
Semantics of imperative sequential programs
The word ‘semantics’ means ‘meaning’. In the title of this book, it announces two central themes. The meaning of a program is given by its specification.
In this chapter, we start again from scratch. Now the meaning of a command is not defined by means of the functions wp and wlp, but by means of the input–output relation of a command. This point of view is closer to the intuitive ideas of most programmers, but —in our view— it is less adequate for program development.
The relational point of view is useful for the analysis of special properties of commands such as totality, termination and determinacy. It provides easy definitions or characterizations of composition, nondeterminate choice, guards and assertions. All these concepts can therefore be treated in this chapter.
When the relational point of view is used in the analysis of repetitions or recursive procedures, one needs to consider finite and infinite sequences of states, usually accompanied by many case distinctions. Such operational reasoning can be useful or necessary, but it is preferable to avoid it whenever possible. We introduce some of the necessary techniques in Chapter 9. It is used only in Chapters 14 and 15.
Although we use the definitions of Section 1.1 and some other concepts introduced in Chapters 1 and 3, this chapter is largely independent of the previous chapters. In fact, it can be read to support them.
In Section 6.1, we introduce (input–output) relations and their weakest preconditions, and we show that relations when interpreted as commands satisfy the healthiness laws introduced in Section 3.2. In Section 6.2, we give the relational interpretation of guards, sequential composition and nondeterminate choice.
In this chapter we present a number of more or less isolated extensions of the fundamental concepts. They broaden the view but have no high priority. We do not need the theory of Chapter 4.
In Section 5.1 we give our version of refinement of commands. Refinement is a very important concept in programming methodology. In this book it plays a less prominent rôle. It occurs in some exercises and it comes again to the fore in Chapter 12. Section 5.2 contains an example where a refinement between procedures is proved by means of the induction rules of Section 2.7.
In Section 5.3 we introduce the calculational method of insertion of guards. This method can be regarded as an alternative to annotation. It is especially useful for proofs of semantic equality. In Section 5.4 this method is used to handle a complicated example that is needed in Chapter 12.
Section 5.5 contains a discussion of strongest postconditions.
In Section 5.6 we prepare the ground for an extension of the termination argument used in Theorem 2(16). The harvest is reaped in Section 5.7, where we present a generalization of Theorem 2(16) and a Necessity Rule for wlp.
Refinement and relative refinement
The function of a compiler is to transform programs written in some high-level programming language, say Pascal, into machine instructions.