What is this book about?
This book sets the standard for process algebra. It assembles the relevant results of most process algebras currently in use, and presents them in a unified framework and notation. It addresses important extensions of the basic theories, like timing, data parameters, probabilities, priorities, and mobility. It systematically presents a hierarchy of algebras that are increasingly expressive, proving the major properties each time.
For researchers and graduate students in computer science, the book will serve as a reference, offering a complete overview of what is known to date, and referring to further literature where appropriate.
Someone familiar with CCS, the Calculus of Communicating Systems, will recognize the minimal process theory MPT as basic CCS, to which a constant expressing successful termination is added, enabling sequential composition as a basic operator, and will then find a more general parallel-composition operator. Someone familiar with ACP, the Algebra of Communicating Processes, will see that termination is made explicit, leading to a replacement of action constants by action prefixing, but will recognize many other things. The approaches to recursion of CCS and ACP are both explained and integrated. Someone familiar with CSP, Communicating Sequential Processes, will have to cope with more changes, but will see the familiar operators of internal and external choice and parallel composition explained in the present setting.