Published online by Cambridge University Press: 05 June 2012
At this point it is worth bringing together several things we have discovered about vibrating systems in earlier chapters.
(1) If a number of harmonic driving forces act simultaneously on a linear system, the resulting steady-state vibration ψ(t) is a superposition of harmonic vibrations whose frequencies are those of the driving forces: each harmonic force makes its own independent contribution to ψ(t). This is an example of the principle of superposition (section 5.2).
(2) The free vibration of a non-linear system is not harmonic, but something more complicated; we found it possible, however, to express an anharmonic vibration ψ(t) as a series of terms consisting of the fundamental vibration and a series of harmonics (sections 7.1 and 7.2).
(3) At small amplitudes, the application of a harmonic driving force to a non-linear system leads to a steady-state ψ(t) which contains the driving frequency and harmonics of that frequency (section 7.3).
(4) The standing waves that are possible on a non-dispersive string of finite length have frequencies in a sequence like v1, 2v1, 3v1,…; when a number of standing waves are excited simultaneously, the vibration ψ(t) of any given point on the string must therefore consist of a series of superposed harmonics.
It is clear from these examples alone that the harmonic type of vibration on which we have spent so much time has a fundamental significance as the building block for more complicated motions.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.