from Part III - Solution verification
Published online by Cambridge University Press: 05 March 2013
The previous chapter focused on the estimation of numerical errors and uncertainties due to the discretization. In addition to estimating the discretization error, we also desire methods for reducing it when either it is found to be too large or when the solutions are not yet in the asymptotic range and therefore the error estimates are not reliable. Applying systematic mesh refinement, although required for assessing the reliability of all discretization error estimation approaches, is not the most efficient method for reducing the discretization error. Since systematic refinement, by definition, refines by the same factor over the entire domain, it generally results in meshes with highly-refined cells or elements in regions where they are not needed. Recall that for 3-D scientific computing applications, each time the mesh is refined using grid halving (a refinement factor of two), the number of cells/elements increases by a factor of eight. Thus systematic refinement for reducing discretization error can be prohibitively expensive.
Targeted, local solution adaptation is a much better strategy for reducing the discretization error. After a discussion of factors affecting the discretization error, this chapter then addresses the two main aspects of solution adaptation:
methods for determining which regions should be adapted and
methods for accomplishing the adaption.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.