Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T13:21:11.568Z Has data issue: false hasContentIssue false

References and Further Reading

Published online by Cambridge University Press:  17 June 2022

Rob DeSalle
Affiliation:
American Museum of Natural History, New York
Ian Tattersall
Affiliation:
American Museum of Natural History, New York
Get access
Type
Chapter
Information
Understanding Race , pp. 155 - 165
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Darwin, C. (1859). On the Origin of Species by Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray.CrossRefGoogle Scholar
Dobzhansky, T. (1937). Genetics and the Origin of Species. New York: Columbia University Press.Google Scholar
Eldredge, N. and Gould, S. J. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In Schopf, T. J. M. (ed.), Models in Paleobiology. San Francisco, CA: Freeman Cooper, pp. 82115.Google Scholar
Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh 52: 399433.CrossRefGoogle Scholar
Huerta-Sánchez, E., Jin, X. Asan, , et al. (2014). Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512: 194197.Google Scholar
Kampourakis, K. (2015). Myth 16: That Gregor Mendel was a lonely pioneer of genetics, being ahead of his time. In Numbers, R. L. and Kampourakis, K. (eds), Newton’s Apple and Other Myths about Science. Cambridge, MA: Harvard University Press, pp. 129138.Google Scholar
Mayr, E. (1942). Systematics and the Origin of Species, from the Viewpoint of a Zoologist. Cambridge, MA: Harvard University Press.Google Scholar
Mendel, J. G. (1866). Versuche über Pflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn, Bd. IV für das Jahr, 1865, Abhandlungen, pp. 347.Google Scholar
Morgan, T. H., Sturtevant, A. H., Muller, H. J., and Bridges, C. B. (1915). The Mechanism of Mendelian Heredity. New York: Henry Holt.Google Scholar
Olby, R. (1979). Mendel no mendelian? History of Science 17(1): 5372.Google Scholar
Tattersall, I. and DeSalle, R. (2019). The Accidental Homo sapiens: Genetics, Behavior, and Free Will. New York: Pegasus.Google Scholar
Tattersall, I. (2012). Masters of the Planet: The Search for Our Human Origins. New York: Palgrave Macmillan.Google Scholar
Tattersall, I. (2015a). The Strange Case of the Rickety Cossack, and Other Cautionary Tales from Human Evolution. New York: Palgrave Macmillan.Google Scholar
Tattersall, I. (2015b). Homo ergaster and its contemporaries. In Henke, W. and Tattersall, I. (eds), Handbook of Paleoanthropology, 2nd ed. Heidelberg: Springer, vol. 3, pp. 21672188.Google Scholar
Tattersall, I. (2022). Understanding Human Evolution. Cambridge: Cambridge University Press.Google Scholar
Villanea, F. A., and Schraiber, J. G. (2019). Multiple episodes of interbreeding between Neanderthal and modern humans. Nature Ecology and Evolution 3: 3944.Google Scholar

Secondary Sources

Agassiz, L. (1850). Diversity of origin of the human races. Christian Examiner 49: 110145.Google Scholar
Bernier, F. (1684). Nouvelle division de la Terre. Journal des Scavans, April 14: 133160.Google Scholar
Blumenbach, J. F. (1775–1795). De Generis Humane Varietate Nativa. Trans. T. Bendyshe (1865). Reissue by Elibron Classics.Google Scholar
Buffon, G. L. L., Cte de. (1749 et seq.; 1860 trans). A Natural History. General and Particular; Containing the History and Theory of the Earth, etc. Excerpted in Count, E. W. (1950). This Is Race: An Anthology Selected from the International Literature on the Races of Man.Google Scholar
Gobineau, J. A. de. (1853–1855). Essai Sur l’Inegalité des Races Humaines, 4 vols. Trans.: Essays on the Inequality of Human Races. New York: Howard Fertig, 1999.Google Scholar
Kant, I. (1775). Von der Verschiedenen Racen der Mensche. Excerpted in Count, E. W. (1950). This Is Race: An Anthology Selected from the International Literature on the Races of Man.Google Scholar
Lamarck, J. B. Chevalier de. (1809). Philosophie Zoologique. Excerpted in Count, E. W. (1950). This Is Race: An Anthology Selected from the International Literature on the Races of Man.Google Scholar
Linnaeus, C. (1758). Systema Naturae, 10th ed. Stockholm: Salvius.Google Scholar
Morton, S. (1839). Crania Americana. Philadelphia, PA: John Penington.Google Scholar
Nott, J. C. and Gliddon, G. R. (1854). Types of Mankind: Ethnological Researches. Philadelphia, PA: Lippincott and Grambo.Google Scholar
Scorrer, K., Faillace, K. E., Hildred, A. et al. (2021). Diversity aboard a Tudor warship: Investigating the origins of the Mary Rose crew using multi-isotope analysis. Royal Society Open Science 8: 5.Google Scholar
UNESCO. (1950). Statement on race. International Social Science Bulletin 3: 154158.Google Scholar
AAPA (1996). Statement on biological aspects of race. American Journal of Physical Anthropology 101: 569570.CrossRefGoogle Scholar
Brace, C. L. and Montagu, A. S. (1965). Man’s Evolution: An Introduction to Physical Anthropology. New York: Macmillan.Google Scholar
Coon, C. (1962). The Origin of Races. New York: Knopf.Google Scholar
Coon, C. and Hunt, E. E. (1965). The Living Races of Man. New York: Knopf.Google Scholar
Count, E. W. (ed.) (1950). This Is Race: An Anthology Selected from the International Literature on the Races of Man. New York: Henry Schuman.Google Scholar
Darwin, C. (1871). The Descent of Man in Relation to Sex. London: John Murray, 2 vols.Google Scholar
Garn, S. M. (1961). Human Races. Springfield, IL: Charles C. Thomas.Google Scholar
Galton, F. (1869). Hereditary Genius: An Inquiry into Its Laws and Consequences. London: Macmillan.Google Scholar
Grant, M. (1916). The Passing of the Great Race. New York: Scribner.Google Scholar
Klaatsch, H. (1899). Die Stellung des Menschen in der Reihe der Saugetiere, speziell der Primaten und der Modus seiner Herausbildung aus einer nied. Globus 76(21): 329332; 76(22): 354357.Google Scholar
Haeckel, E. (1868). Natürlische Schöpfungsgeschichte, cited from English trans: The History of Creation, 6th ed. New York: D. Appleton and Co., 1914.Google Scholar
Huxley, T. H. (1863). Evidence as to Man’s Place in Nature. London: Williams and Norgate.Google Scholar
Keith, A. (1936). History from Caves: A New Theory of the Origin of Modern Races of Mankind. London: British Speleological Association.Google Scholar
Livingstone, F. E. (1962). On the nonexistence of human races. In Montagu, M. F. (ed.), The Concept of Race. New York: Free Press, pp. 4660.Google Scholar
Marks, J. (2008). Race: Past, present and future. In Koenig, B. A., Lee, S.-J., and Richardson, S. (eds), Revisiting Race in a Genomic Age. New Brunswick, NJ: Rutgers University Press, pp. 2138.Google Scholar
Montagu, A. S. (1942). Man’s Most Dangerous Myth: The Fallacy of Race. New York: Columbia University Press.Google Scholar
Tattersall, I. and DeSalle, R. (2011). Race? Debunking a Scientific Myth. College Station, TX: Texas A&M Press.Google Scholar
Vogt, K. (1864). Lectures on Man: His Place in Creation, and the History of the Earth. London: Longman.Google Scholar
Wallace, A. R. (1864). The origin of races and the antiquity of man deduced from the theory of “natural selection.” Journal of the Anthropological Society 2: clviiclxxvi.Google Scholar
Washburn, S. (1963). The study of race. American Anthropologist 65: 521531.Google Scholar
Weidenreich, F. (1947). Facts and speculations concerning the origin of Homo sapiens. American Anthropologist 49: 187203.Google Scholar
Weiner, J. S. (1957). Physical anthropology: An appraisal. American Scientist 45: 504509.Google Scholar
Wolpoff, M. and Caspari, R. (1998). Race and Human Evolution: A Fatal Attraction. Boulder, CO: Westview Press.Google Scholar
Cann, R. L., Stoneking, M., and Wilson, A. C. (1987). Mitochondrial DNA and human evolution. Nature 325(6099): 3136.Google Scholar
Cavalli-Sforza, L. L., Menozzi, P., and Piazza, A. (1994). The History and Geography of Human Genes. Princeton, NJ: Princeton University Press.Google Scholar
DeSalle, R., Tessler, M., and Rosenfeld, J. (2020). Phylogenomics: A Primer. Boca Raton, FL: CRC Press.Google Scholar
DeSalle, R., Schierwater, B., and Hadrys, H. (2017). MtDNA: The small workhorse of evolutionary studies. Frontiers in Bioscience 22: 873887.Google Scholar
DeSalle, R. and Hadrys, H. (2017). Evolutionary biology and mitochondrial genomics: 50,000 mitochondrial DNA genomes and counting. eLS. https://doi.org/10.1002/9780470015902.a0027270Google Scholar
Edwards, A. W. F. (2003). Human genetic diversity: Lewontin’s fallacy. BioEssays 25(8): 798801.Google Scholar
Harper, P. S. (2008). A Short History of Medical Genetics. New York: Oxford University Press.Google Scholar
Havrilla, J. M., Pedersen, B. S., Layer, R. M., and Quinlan, A. R. (2019). A map of constrained coding regions in the human genome. Nature Genetics 51 (1): 8895.Google Scholar
Hirschfeld, L. and Hirschfeld, H. (1919). Serological differences between the blood of different races: The result of researches on the Macedonian front. Lancet 2: 675679.Google Scholar
Knoppers, B. M., Zawati, M. H., and Kirby, E. S. (2012). Sampling populations of humans across the world: ELSI issues. Annual Review of Genomics and Human Genetics 13: 395413.Google Scholar
Lek, M., Karczewski, K. J. Minikel, E. V. et al. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616): 285291.Google Scholar
Lewontin, R. C. (1974). The Genetic Basis of Evolutionary Change. New York: Columbia University Press.Google Scholar
Lewontin, R. C. (1972). The apportionment of human diversity. In Evolutionary Biology. New York: Springer, pp. 381398.Google Scholar
Lott, M. T., Leipzig, J. N., Derbeneva, O. H. et al. (2013). mtDNA variation and analysis using Mitomap and Mitomaster. Current Protocols in Bioinformatics 44(1): 123.Google Scholar
Nielsen, R., Akey, J. M., Jakobsson, M. et al. (2017). Tracing the peopling of the world through genomics. Nature 541: 302310.Google Scholar
Paskal, W., Paskal, A. M., Dębski, T., Gryziak, M., and Jaworowski, J. (2018). Aspects of modern biobank activity: Comprehensive review. Pathology and Oncology Research 24 (4): 771785.Google Scholar
Provine, W. B. (2020). The Origins of Theoretical Population Genetics. Chicago, IL: University of Chicago Press.Google Scholar
Swede, H., Stone, C. L., and Norwood, A. R. (2007). National population-based biobanks for genetic research. Genetics in Medicine 9(3): 141149.Google Scholar
Vogel, F. and Motulsky, A. G. (2013). Vogel and Motulsky’s Human Genetics: Problems and Approaches. New York: Springer Science & Business Media.Google Scholar
Cavalli-Sforza, L. L., Menozzi, P., and Piazza, A. (1994). The History and Geography of Human Genes. Princeton, NJ: Princeton University Press (abridged paperback edition).Google Scholar
DeSalle, R. (2018). The paleogenomic revolution: New bearings on human dispersal. Natural History 126 (8): 2326.Google Scholar
Lachance, J., and Tishkoff, S. A. (2013). SNP ascertainment bias in population genetic analyses: Why it is important, and how to correct it. Bioessays 35: 780786.Google Scholar
Petr, M., Hajdinjak, M., Fu, Q. et al. (2020). The evolutionary history of Neanderthal and Denisovan Y chromosomes. Science 369: 16531656.Google Scholar
Posth, C., Renaud, G., Mittnik, A. et al. (2016). Pleistocene mitochondrial genomes suggest a single major dispersal of non-Africans and a Late Glacial population turnover in Europe. Current Biology 26: 827833.Google Scholar
Roychoudhury, A. K., Roychoudhury, N., and Nei, M. (1988). Human Polymorphic Genes: World Distribution. New York: Oxford University Press.Google Scholar
Tills, D., Kopec, A. C., and Tills, R. E. (1983). The Distribution of the Human Blood Groups and Other Polymorphisms. Oxford: Oxford University Press.Google Scholar
1000 Genomes Project Consortium. (2015). A global reference for human genetic variation. Nature 526(7571): 6875.Google Scholar
Comfort, N. (2014). Genetics: Under the skin. Nature 513: 306307.CrossRefGoogle Scholar
François, O., Currat, M., Ray, N. et al. (2010). Principal component analysis under population genetic models of range expansion and admixture. Molecular Biology and Evolution 27: 12571268.Google Scholar
Galbusera, P., Lens, L., Schenck, T., Waiyaki, E., and Matthysen, E. (2000). Genetic variability and gene flow in the globally, critically endangered Taita thrush. Conservation Genetics 1: 4555.Google Scholar
Gopalan, P., Hao, W., Blei, D. M., and Storey, J. D. (2016). Scaling probabilistic models of genetic variation to millions of humans. Nature Genetics 48(12): 15871590.Google Scholar
Han, E., Carbonetto, P., Curtis, R. E. et al. (2017). Clustering of 770,000 genomes reveals post-colonial population structure of North America. Nature Communications 8: 112.Google Scholar
Li, J. Z., Absher, D. M., Tang, H. et al. (2008). Worldwide human relationships inferred from genome-wide patterns of variation. Science 319(5866): 11001104.Google Scholar
Novembre, J. (2016). Pritchard, Stephens, and Donnelly on population structure. Genetics 204: 391393.Google Scholar
Price, A. L., Patterson, N. J., Plenge, R. M. et al. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics 38 (8): 904909.Google Scholar
Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155: 945959.Google Scholar
Rosenberg, N. A., Pritchard, J. K., Weber, L. et al. (2002). The genetic structure of human populations. Science 298: 23812385 (and technical comment, 2003).Google Scholar
Yudell, M. (2014). Race Unmasked: Biology and Race in the Twentieth Century. New York: Columbia University Press.Google Scholar
DeSalle, R. and Tattersall, I. (2018). What a DNA can (and cannot) tell us about the emergence of language and speech. Journal of Language Evolution 3: 18.Google Scholar
Fang, H., Hui, Q., Lynch, J. et al. (2019). Harmonizing genetic ancestry and self-identified race/ethnicity in genome-wide association studies. American Journal of Human Genetics 105: 763772.Google Scholar
Fricke-Galindo, I., and Falfán-Valencia, R. (2021). Genetics insight for COVID-19 susceptibility and severity: A review. Frontiers in Immunology 12: 1057.Google Scholar
Golestaneh, L., Neugarten, J., Fisher, M. et al. (2020). The association of race and COVID-19 mortality. EClinicalMedicine 25: 100455.Google Scholar
Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters 31(8): 651666.Google Scholar
Kahn, J. (2006). Race, pharmacogenomics, and marketing: Putting BiDil in context. American Journal of Bioethics 6: W15.Google Scholar
Lee, A. C. K., Alwan, N. A., and Morling, J. R. (2020). COVID19, race and public health. Public Health 185: A1A2.Google Scholar
Lewontin, R. (1998). The evolution of cognition: Questions we will never answer. In An Invitation to Cognitive Science: Methods, Models, and Conceptual Issues, vol. 4. Cambridge, MA: MIT Press, pp. 106132.Google Scholar
Roberts, D. E. (2011). What’s wrong with race-based medicine: Genes, drugs, and health disparities. Minnesota Journal of Science and Technology 12: 121.Google Scholar
Sirugo, G., Williams, S. M., and Tishkoff, S. A. (2019). The missing diversity in human genetic studies. Cell 177: 2631.Google Scholar
Tam, V., Patel, N., Turcotte, M. et al. (2019). Benefits and limitations of genome-wide association studies. Nature Reviews Genetics 20: 467484.Google Scholar
Tattersall, I., and DeSalle, R. (2012). Race? Debunking a Scientific Myth. College Station, TX: Texas A&M University Press.Google Scholar
Tattersall, I., and DeSalle, R. (2019). The Accidental Homo sapiens: Genetics, Behavior, and Free Will. New York: Pegasus Press.Google Scholar
Barsh, G. S. (2003). What controls variation in human skin color? PLoS Biology 1(1): e27.Google Scholar
Beall, C. M. (1981). Optimal birthweights in Peruvian populations at high and low altitudes. American Journal of Physical Anthropology 56: 209216.Google Scholar
Beall, C. M. (1982). A comparison of chest morphology in high altitude Asian and Andean populations. Human Biology 54: 145163.Google Scholar
Beall, C. M. (2003). High altitude adaptations. The Lancet 362: s14s15.Google Scholar
Beja-Pereira, A., Luikart, G., England, P. R. et al. (2003). Gene–culture coevolution between cattle milk protein genes and human lactase genes. Nature Genetics 35: 311313.Google Scholar
Bersaglieri, T., Sabeti, P. C., Patterson, N. et al. (2004). Genetic signatures of strong recent positive selection at the lactase gene. American Journal of Human Genetics 74: 11111120.Google Scholar
Chen, F., Welker, F., Shen, C. C. et al. (2019). A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature 569: 409412.Google Scholar
Gross, M. (2017). Ancient genomes of the Americas. Current Biology 28: R1365R1368.Google Scholar
Hollox, E. (2005). Genetics of lactase persistence: Fresh lessons in the history of milk drinking. European Journal of Human Genetics 13: 267269.Google Scholar
Huerta-Sánchez, E., Jin, X., Asan, et al. (2014). Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512: 194197.Google Scholar
Jablonski, N. (2006). Skin: A Natural History. Berkeley, CA: University of California Press.Google Scholar
Lee, S. and Piazza, S. J. (2009). Built for speed: Musculoskeletal structure and sporting ability. Journal of Experimental Biology 212: 37003707.Google Scholar
Moore, L. G., Niermeyer, S. , and Zamudio, S. (1998). Human adaptation to high altitude: Regional and life-cycle perspectives. Yearbook of Physical Anthropology 41: 2564.Google Scholar
Piltulko, V. V., Nikolsky, P. A., Girya, E. Y. et al. (2004). The Yana RHS Site: Humans in the Arctic before the Last Glacial Maximum. Science 303: 5256.Google Scholar
Swallow, D. M. (2003). Genetics of lactase persistence and lactase intolerance. Annual Review of Genetics 37: 197219.Google Scholar
Willerslev, E., and Meltzer, D. J. (2021). Peopling of the Americas as inferred from ancient genomics. Nature 594: 356364.Google Scholar
Fuerst, J. (2015). The nature of race: The genealogy of the concept and the biological construct’s contemporaneous utility. Open Behavioral Genetics. https://doi.org/10.26775/OBG.2015.06.18Google Scholar
Gower, J. C. (1972). Measures of taxonomic distance and their analysis. In Weiner, J. S. and Huizinga, J (eds.), The Assessment of Population Affinities in Man. Oxford:Clarendon Press, pp. 124.Google Scholar
Murray, C. (2021). Facing Reality: Two Truths about Race in America. New York: Encounter Books.Google Scholar
Murray, C. (2020). Human Diversity: The Biology of Gender, Race, and Class. New York: Twelve.Google Scholar
Spencer, Q. (2015). Philosophy of race meets population genetics. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 52: 4655.Google Scholar
Wade, N. (2015). A Troublesome Inheritance: Genes, Race and Human History. New York: Penguin Books.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×