Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T09:59:13.255Z Has data issue: false hasContentIssue false

4 - Top-down and bottom-up interactions determine tree and herbaceous layer dynamics in savanna grasslands

from Part II - Ecosystems

Published online by Cambridge University Press:  05 May 2015

A. Carla Stave
Affiliation:
Yale University
Sally E. Koerner
Affiliation:
Colorado State University
Torrance C. Hanley
Affiliation:
Northeastern University, Boston
Kimberly J. La Pierre
Affiliation:
University of California, Berkeley
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Trophic Ecology
Bottom-up and Top-down Interactions across Aquatic and Terrestrial Systems
, pp. 86 - 106
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. M. T., Hopcraft, J. G. C. J., Eby, S., et al. (2010). Landscape-scale analyses suggest both nutrient and antipredator advantages to Serengeti herbivore hotspots. Ecology, 91, 1519–1529.CrossRefGoogle ScholarPubMed
Archibald, S. and Bond, W. (2003). Growing tall vs growing wide: tree architecture and allometry of Acacia karroo in forest, savanna, and arid environments. Oikos, 102, 3–14.CrossRefGoogle Scholar
Archibald, S. and Scholes, R. J. (2007). Leaf green-up in a semi-arid African savanna – separating tree and grass responses to environmental cues. Journal of Vegetation Science, 18, 583–594.Google Scholar
Archibald, S., Bond, W., Stock, W. and Fairbanks, D. (2005). Shaping the landscape: fire-grazer interactions in an African savanna. Ecological Applications, 15, 96–109.CrossRefGoogle Scholar
Archibald, S., Roy, D. P., Van Wilgen, B. W. and Scholes, R. J. (2009). What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biology, 15, 613–630.CrossRefGoogle Scholar
Archibald, S., Staver, A. C. and Levin, S. A. (2012). Evolution of human-driven fire regimes in Africa. Proceedings of the National Academy of Sciences of the USA, 109, 847–852.CrossRefGoogle ScholarPubMed
Augustine, D. and McNaughton, S. (2004). Regulation of shrub dynamics by native browsing ungulates on East African rangeland. Journal of Applied Ecology, 41, 45–58.CrossRefGoogle Scholar
Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. and Knops, J. M. H. (2006). Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecology Letters, 9, 780–788.CrossRefGoogle ScholarPubMed
Balfour, D. and Howison, O. (2002). Spatial and temporal variation in a mesic savanna fire regime: responses to variation in annual rainfall. African Journal of Range and Forage Science, 19, 45–53.CrossRefGoogle Scholar
Barnes, M. (2001). Effects of large herbivores and fire on the regeneration of Acacia erioloba woodlands in Chobe National Park, Botswana. African Journal of Ecology, 39, 340–350.CrossRefGoogle Scholar
Beckage, B., Platt, W. J. and Gross, L. J. (2009). Vegetation, fire, and feedbacks: a disturbance-mediated model of savannas. American Naturalist, 174, 805–818.Google ScholarPubMed
Beerling, D. J. and Osborne, C. P. (2006). The origin of the savanna biome. Global Change Biology, 12, 2023–2031.CrossRefGoogle Scholar
Belsky, A. J. (1992). Effects of grazing, competition, disturbance and fire on species composition and diversity in grassland communities. Journal of Vegetation Science, 3, 187–200.CrossRefGoogle Scholar
Bhattachan, A., Tatlhego, M., Dintwe, K., et al. (2012). evaluating ecohydrological theories of woody root distribution in the Kalahari. PLoS One, 7, e33996.CrossRefGoogle ScholarPubMed
Bond, W. (2005). Large parts of the world are brown or black: a different view on the “Green World” hypothesis. Journal of Vegetation Science, 16, 261–266.Google Scholar
Bond, W. J. (2008). What limits trees in C-4 grasslands and savannas? Annual Review of Ecology, Evolution and Systematics, 39, 641–659.CrossRefGoogle Scholar
Bond, W. J. (2010). Do nutrient-poor soils inhibit development of forests? A nutrient stock analysis. Plant Soil, 334, 47–60.CrossRefGoogle Scholar
Bond, W. and Keeley, J. (2005). Fire as a global “herbivore”: the ecology and evolution of flammable ecosystems. Trends in Ecology and Evolution, 20, 387–394.CrossRefGoogle ScholarPubMed
Bond, W. and Loffell, D. (2001). Introduction of giraffe changes acacia distribution in a South African savanna. African Journal of Ecology, 39, 286–294.CrossRefGoogle Scholar
Bond, W. J. and Midgley, G. F. (2012). Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philosophical Transactions of the Royal Society Series B, 367, 601–612.CrossRefGoogle ScholarPubMed
Bond, W., Woodward, F. and Midgley, G. (2005). The global distribution of ecosystems in a world without fire. New Phytologist, 165, 525–537.Google Scholar
Bond, W. J., Silander, J. A., Jr, Ranaivonasy, J. and Ratsirarson, J. (2008). The antiquity of Madagascar's grasslands and the rise of C4 grassy biomes. Journal of Biogeography, 35, 1743–1758.CrossRefGoogle Scholar
Brashares, J. S., Garland, T. and Arcese, P. (2000). Phylogenetic analysis of coadaptation in behavior, diet, and body size in the African antelope. Behavioral Ecology, 11, 452–463.CrossRefGoogle Scholar
Briggs, J. M., Knapp, A. K., Blair, J. M., et al. (2005). An ecosystem in transition: causes and consequences of the conversion of mesic grassland to shrubland. Bioscience, 55, 243–254.CrossRefGoogle Scholar
Briske, D. D. (1991). Developmental morphology and physiology of grasses. In Grazing Management: An Ecological Perspective, ed. Heitschmidt, R. K. and Stuth, J. W.. Portland, OR: Timber Press, pp. 85–108.Google Scholar
Bucini, G. and Hanan, N. P. (2007). A continental-scale analysis of tree cover in African savannas. Global Ecology and Biogeography, 16, 593–605.CrossRefGoogle Scholar
Buis, G. M., Blair, J. M., Burkepile, D. E., et al. (2009). Controls of aboveground net primary production in mesic savanna grasslands: an inter-hemispheric comparison. Ecosystems, 12, 982–995.CrossRefGoogle Scholar
Buitenwerf, R., Bond, W. J., Stevens, N. and Trollope, W. S. W. (2011). Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver. Global Change Biology, 18, 675–684.Google Scholar
Bustamante, M., Martinelli, L., Silva, D., et al. (2004). N-15 natural abundance in woody plants and soils of central Brazilian savannas (cerrado). Ecological Applications, 14, S200–S213.CrossRefGoogle Scholar
Bustamante, M. M. C., Medina, E., Asner, G. P., Nardoto, G. B. and Garcia-Montiel, D. C. (2006). Nitrogen cycling in tropical and temperate savannas. Biogeochemistry, 79, 209–237.CrossRefGoogle Scholar
Caylor, K. K., Scanlon, T. M. and Rodriguez-Iturbe, I. (2009). Ecohydrological optimization of pattern and processes in water-limited ecosystems: a trade-off-based hypothesis. Water Resources Research, 45, W08407.CrossRefGoogle Scholar
Cech, P. G., Kuster, T., Edwards, P. J. and Olde Venterink, H. (2008). Effects of herbivory, fire and N2-fixation on nutrient limitation in a humid African savanna. Ecosystems, 11, 991–1004.CrossRefGoogle Scholar
Chesson, P. (2000a). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343–366.CrossRefGoogle Scholar
Chesson, P. (2000b). General theory of competitive coexistence in spatially-varying environments. Theoretical Population Biology, 58, 27–27.CrossRefGoogle ScholarPubMed
Coetsee, C., Bond, W. J. and February, E. C. (2010). Frequent fire affects soil nitrogen and carbon in an African savanna by changing woody cover. Oecologia, 162, 1027–1034.CrossRefGoogle Scholar
Collins, S. L. (1992). Fire frequency and community heterogeneity in tallgrass prairie vegetation. Ecology, 73, 2001–2006.CrossRefGoogle Scholar
Collins, S. L., Glenn, S. M. and Gibson, D. J. (1995). Experimental-analysis of intermediate disturbance and initial floristic composition: decoupling cause and effect. Ecology, 76, 486–492.CrossRefGoogle Scholar
Coughenour, M. B. (1985). Graminoid responses to grazing by large herbivores: adaptations, exaptations, and interacting processes. Annals of the Missouri Botanical Garden, 852–863.Google Scholar
Cramer, M. D., Chimphango, S. B. M., van Cauter, A., Waldram, M. S. and Bond, W. J. (2007). Grass competition induces N-2 fixation in some species of African acacia. Journal of Ecology, 95, 1123–1133.CrossRefGoogle Scholar
Cramer, M. D., van Cauter, A. and Bond, W. J. (2010). Growth of N2-fixing African savanna Acacia species is constrained by below-ground competition with grass. Journal of Ecology, 98, 156–167.CrossRefGoogle Scholar
Cromsigt, J. P. G. M. and Olff, H. (2008). Dynamics of grazing lawn formation: an experimental test of the role of scale-dependent processes. Oikos, 117, 1444–1452.CrossRefGoogle Scholar
Dalgleish, H. J. and Hartnett, D. C. (2006). Belowground bud banks increase along a precipitation gradient of the North American Great Plains: a test of the meristem limitation hypothesis. New Phytologist, 171, 81–89.CrossRefGoogle Scholar
D'odorico, P., Caylor, K., Okin, G. S. and Scanlon, T. M. (2007). On soil moisture-vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. Journal of Geophysical Research: Biogeosciences, 112, G04010.CrossRefGoogle Scholar
Dobson, A. (1995). The ecology and epidemiology of rinderpest virus in Serengeti and Ngorongoro Conservation Area. Serengeti II: Dynamics, Management, and Conservation of an Ecosystem, 2, 485.Google Scholar
Eby, S. and Ritchie, M. E. (2013). The impacts of burning on Thomson's gazelles, Gazella thomsonii, vigilance in Serengeti National Park, Tanzania. African Journal of Ecology, 51, 337–342.CrossRefGoogle Scholar
Elser, J. J., Bracken, M. E. S., Cleland, E. E., et al. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135–1142.CrossRefGoogle ScholarPubMed
Facelli, J. M., Chesson, P. and Barnes, N. (2005). Differences in seed biology of annual plants in arid lands: a key ingredient of the storage effect. Ecology, 86, 2998–3006.CrossRefGoogle Scholar
February, E. C. and Higgins, S. I. (2010). The distribution of tree and grass roots in savannas in relation to soil nitrogen and water. South African Journal of Botany, 76, 517–523.CrossRefGoogle Scholar
February, E. C., Higgins, S. I., Bond, W. J. and Swemmer, L. (2013). Influence of competition and rainfall manipulation on the growth responses of savanna trees and grasses. Ecology, 94, 1155–1164.CrossRefGoogle Scholar
Fensham, R. J., Fairfax, R. J. and Ward, D. P. (2009). Drought-induced tree death in savanna. Global Change Biology, 15, 380–387.CrossRefGoogle Scholar
Fornara, D. A. and Toit Du, J. T. (2007). Browsing lawns? Responses of Acacia nigrescens to ungulate browsing in an African savanna. Ecology, 88, 200–209.CrossRefGoogle Scholar
Frank, D. A. and Groffman, P. M. (1998). Ungulate vs. landscape control of soil C and N processes in grasslands of Yellowstone National Park. Ecology, 79, 2229–2241.CrossRefGoogle Scholar
Gignoux, J., Clobert, J. and Menaut, J. (1997). Alternative fire resistance strategies in savanna trees. Oecologia, 110, 576–583.CrossRefGoogle ScholarPubMed
Gillson, L. (2006). A “large infrequent disturbance” in an East African savanna. African Journal of Ecology, 44, 458–467.CrossRefGoogle Scholar
Good, S. P. and Caylor, K. K. (2011). Climatological determinants of woody cover in Africa. Proceedings of the National Academy of Sciences of the USA, 108, 4902–4907.CrossRefGoogle ScholarPubMed
Govender, N., Trollope, W. S. W. and Van Wilgen, B. W. (2006). The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. Journa of Applied Ecology, 43, 748–758.Google Scholar
Grange, S., Owen-Smith, N., Gaillard, J.-M., et al. (2012). Changes of population trends and mortality patterns in response to the reintroduction of large predators: the case study of African ungulates. Acta Oecologica, 42, 16–29.CrossRefGoogle Scholar
Greve, M., Lykke, A. and Fagg, C. (2012). Continental-scale variability in browser diversity is a major driver of diversity patterns in acacias across Africa. Journal of Ecology, 100, 1093–1104.CrossRefGoogle Scholar
Hanan, N. P., Sea, W. B., Dangelmayr, G. and Govender, N. (2008). Do fires in savannas consume woody biomass? A comment on approaches to modeling savanna dynamics. American Naturalist, 171, 851–856.CrossRefGoogle Scholar
Harris, G., Thirgood, S., Hopcraft, J., Cromsight, J. and Berger, J. (2009). Global decline in aggregated migrations of large terrestrial mammals. Endangered Species Research, 7, 55–76.CrossRefGoogle Scholar
Hartnett, D. C., Hickman, K. R. and Walter, L. E. F. (1996). Effects of bison grazing, fire, and topography on floristic diversity in tallgrass prairie. Journal of Range Management, 49, 413–420.CrossRefGoogle Scholar
Hartshorn, A. S., Coetsee, C. and Chadwick, O. A. (2009). Pyromineralization of soil phosphorus in a South African savanna. Chemical Geology, 267, 24–31.CrossRefGoogle Scholar
Hawkins, B. A., Field, R., Cornell, H. V., et al. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105–3117.CrossRefGoogle Scholar
Hennenberg, K., Fischer, F., Kouadio, K., et al. (2006). Phytomass and fire occurrence along forest–savanna transects in the Comoé National Park, Ivory Coast. Journal of Tropical Ecology, 22, 303–311.CrossRefGoogle Scholar
Higgins, S. I. and Scheiter, S. (2012). Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature, 488, 209–212.CrossRefGoogle Scholar
Higgins, S., Bond, W. and Trollope, W. (2000). Fire, resprouting and variability: a recipe for grass–tree coexistence in savanna. Journal of Ecology, 88, 213–229.CrossRefGoogle Scholar
Higgins, S. I., Delgado-Cartay, M. D., February, E. C. and Combrink, H. J. (2011). Is there a temporal niche separation in the leaf phenology of savanna trees and grasses?Journal of Biogeography, 38, 2165–2175.CrossRefGoogle Scholar
Hillebrand, H., Gruner, D. S., Borer, E. T., et al. (2007). Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proceedings of the National Academy of Sciences of the USA, 104, 10904–10909.CrossRefGoogle ScholarPubMed
Hirota, M., Holmgren, M., Van Nes, E. H. and Scheffer, M. (2011). Global resilience of tropical forest and savanna to critical transitions. Science, 334, 232–235.CrossRefGoogle Scholar
Hoetzel, S., Dupont, L., Schefuss, E., Rommerskirchen, F. and Wefer, G. (2013). The role of fire in Miocene to Pliocene C-4 grassland and ecosystem evolution. Nature Geoscience, 6, 1027–1030.CrossRefGoogle Scholar
Hoffmann, W. and Moreira, A. (2003). The role of fire in population dynamics of woody plants. Cerrados of Brazil, 159–177.Google Scholar
Hoffmann, W., Orthen, B. and Do Nascimento, P. (2003). Comparative fire ecology of tropical savanna and forest trees. Functional Ecology, 17, 720–726.CrossRefGoogle Scholar
Hoffmann, W., Adasme, R., Haridasan, M. T., et al. (2009). Tree topkill, not mortality, governs the dynamics of savanna-forest boundaries under frequent fire in central Brazil. Ecology, 90, 1326–1337.CrossRefGoogle Scholar
Hoffmann, W. A., Geiger, E. L., Gotsch, S. G., et al. (2012). Ecological thresholds at the savanna–forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecology Letters, 15, 759–768.CrossRefGoogle ScholarPubMed
Holdo, R. M., Holt, R. D. and Fryxell, J. M. (2009a). Grazers, browsers, and fire influence the extent and spatial pattern of tree cover in the Serengeti. Ecological Applications, 19, 95–109.CrossRefGoogle ScholarPubMed
Holdo, R. M., Sinclair, A. R. E., Dobson, A. P., et al. (2009b). A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLoS Biology, 7, e1000210.CrossRefGoogle ScholarPubMed
Holdridge, L. R. (1947). Determination of world plant formations from simple climatic data. Science, 105, 367–368.CrossRefGoogle ScholarPubMed
Hopcraft, J. G. C., Olff, H. and Sinclair, A. R. E. (2010). Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas. Trends in Ecology and Evolution, 25, 119–128.CrossRefGoogle ScholarPubMed
Hopcraft, J. G. C., Anderson, T. M., Pérez-Vila, S., Mayemba, E. and Olff, H. (2011). Body size and the division of niche space: food and predation differentially shape the distribution of Serengeti grazers. Journal of Animal Ecology, 81, 201–213.Google ScholarPubMed
Horn, H. S. and Macarthur, R. H. (1972). Competition among fugitive species in a harlequin environment. Ecology, 53, 749–752.CrossRefGoogle Scholar
Huenneke, L. F., Hamburg, S. P., Koide, R., Mooney, H. A. and Vitousek, P. M. (1990). Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology, 71, 478–491.CrossRefGoogle Scholar
Hutchinson, G. E. (1959). Homage to Santa Rosalia or why are there so many kinds of animals? American Naturalist, 93, 145–159.CrossRefGoogle Scholar
Illius, A. W. and O'Connor, T. G. (2000). Resource heterogeneity and ungulate population dynamics. Oikos, 89, 283–294.CrossRefGoogle Scholar
Illius, A. W., Gordon, I. J., Elston, D. A. and Milne, J. D. (1999). Diet selection in goats: a test of intake-rate maximization. Ecology, 80, 1008–1018.CrossRefGoogle Scholar
Jackson, R. B., Banner, J. L., Jobb Aacute Gy, E. G., Pockman, W. T. and Wall, D. H. (2002). Ecosystem carbon loss with woody plant invasion of grasslands. Nature, 418, 623.CrossRefGoogle ScholarPubMed
Johnson, L. C. and Matchett, J. R. (2001). Fire and grazing regulate belowground processes in tallgrass prairie. Ecology, 82, 3377–3389.CrossRefGoogle Scholar
Keeley, J. E. and Rundel, P. W. (2005). Fire and the Miocene expansion of C4 grasslands. Ecology Letters, 8, 683–690.CrossRefGoogle Scholar
Kirkman, K. P., Collins, S. L., Smith, M. D., et al. (2014). Responses to fire differ between South African and North American grassland communities. Journal of Vegetation Science, 25, 793–804.CrossRefGoogle Scholar
Knapp, A. K. and Seastedt, T. R. (1986). Detritus accumulation limits productivity of tallgrass prairie. Bioscience, 36, 662–668.CrossRefGoogle Scholar
Knapp, A. K., Briggs, J. M., Blair, J. M. and Turner, C. L. (1998). Patterns and controls of aboveground net primary production in tallgrass prairie. In Grassland Dynamics: Long-term Ecological Research in Tallgrass Prairie, ed. Knapp, A. K., Briggs, J. M., Hartnett, D. C. and Collins, S. L.. Oxford: Oxford University Press, pp. 193–221.Google Scholar
Knapp, A. K., Blair, J. M., Briggs, J. M., et al. (1999). The keystone role of bison in North American tallgrass prairie: bison increase habitat heterogeneity and alter a broad array of plant, community, and ecosystem processes. Bioscience, 49, 39–50.CrossRefGoogle Scholar
Knapp, A. K., Briggs, J. M. and Koelliker, J. K. (2001). Frequency and extent of water limitation to primary production in a mesic temperate grassland. Ecosystems, 4, 19–28.CrossRefGoogle Scholar
Koerner, S. E. and Collins, S. L. (2014). Interactive effects of grazing, drought, and fire on grassland communities in North America and South Africa. Ecology, 95, 98–109.CrossRefGoogle ScholarPubMed
Koerner, S. E., Burkepile, D. E., Fynn, R. W. S., et al. (2014). Plant community response to loss of large herbivores differs between North American and South African savanna grasslands. Ecology, 95, 808–816. DOI: 10.1890/13-1828.1.CrossRefGoogle ScholarPubMed
Krook, K., Bond, W. J. and Hockey, P. A. (2013). The effect of grassland shifts on the avifauna of a South African savanna. Ostrich, 78, 271–279.Google Scholar
Kulmatiski, A. and Beard, K. H. (2012). Root niche partitioning among grasses, saplings, and trees measured using a tracer technique. Oecologia, 171, 25–37.Google ScholarPubMed
Laca, E. A., Sokolow, S., Galli, J. R. and Cangiano, C. A. (2010). Allometry and spatial scales of foraging in mammalian herbivores. Ecology Letters, 13, 311–320.CrossRefGoogle ScholarPubMed
Ladwig, L. M., Collins, S. L., Swann, A. L., et al. (2012). Above- and belowground responses to nitrogen addition in a Chihuahuan Desert grassland. Oecologia, 169, 177–185.CrossRefGoogle Scholar
Lloyd, J., Bird, M. I., Vellen, L., et al. (2008). Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate. Tree Physiology, 28, 451–468.CrossRefGoogle ScholarPubMed
Loarie, S. R., Tambling, C. J. and Asner, G. P. (2013). Lion hunting behaviour and vegetation structure in an African savanna. Animal Behaviour, 85, 899–906.CrossRefGoogle Scholar
Macarthur, R. and Levins, R. (1967). The limiting similarity, convergence, and divergence of coexisting species. American Naturalist, 101, 377–382.CrossRefGoogle Scholar
McNaughton, S. (1984). Grazing lawns: animals in herds, plant form, and coevolution. American Naturalist, 124, 863–886.CrossRefGoogle Scholar
McNaughton, S. J. (1985). Ecology of a grazing ecosystem: The Serengeti. Ecological Monographs, 55, 259–294.CrossRefGoogle Scholar
Michel, A. L., Bengis, R. G., Keet, D. F., et al. (2006). Wildlife tuberculosis in South African conservation areas: implications and challenges. Veterinary Microbiology, 112, 91–100.CrossRefGoogle ScholarPubMed
Midgley, J. J., Lawes, M. J. and Chamaillé-Jammes, S. (2010). TURNER REVIEW No. 19. Savanna woody plant dynamics: the role of fire and herbivory, separately and synergistically. Australian Journal of Botany, 58, 1–11.CrossRefGoogle Scholar
Miller, D., Archer, S., Zitzer, S. and Longnecker, M. (2001). Annual rainfall, topoedaphic heterogeneity and growth of an arid land tree (Prosopis glandulosa). Journal of Arid Environments, 48, 23–33.CrossRefGoogle Scholar
Moncrieff, G. R., Chamaillé-Jammes, S., Higgins, S. I., O'Hara, R. B. and Bond, W. J. (2011). Tree allometries reflect a lifetime of herbivory in an African savanna. Ecology, 92, 2310–2315.CrossRefGoogle Scholar
Naito, A. T. and Cairns, D. M. (2011). Patterns and processes of global shrub expansion. Progress in Physical Geography, 35, 423–442.Google Scholar
Nardoto, G. B., da Cunha Bustamante, M. M., Pinto, A. S. and Klink, C. A. (2006). Nutrient use efficiency at ecosystem and species level in savanna areas of Central Brazil and impacts of fire. Journal of Tropical Ecology, 22, 191–201.CrossRefGoogle Scholar
Nippert, J. B., Knapp, A. K. and Briggs, J. M. (2005). Intra-annual rainfall variability and grassland productivity: can the past predict the future? Plant Ecology, 184, 65–74.Google Scholar
O'Connor, T. G. (1993). The influence of rainfall and grazing on the demography of some African savanna grasses: a matrix modelling approach. Journal of Applied Ecology, 30, 119–132.CrossRefGoogle Scholar
O'Connor, T. G. (1995). Acacia karroo invasion of grassland: environmental and biotic effects influencing seedling emergence and establishment. Oecologia, 103, 214–223.CrossRefGoogle ScholarPubMed
O'Kane, C. A. J., Duffy, K. J., Page, B. R. and Macdonald, D. W. (2012). Heavy impact on seedlings by the impala suggests a central role in woodland dynamics. Journal of Tropical Ecology, 28, 291–297.CrossRefGoogle Scholar
Olff, H. and Ritchie, M. E. (1998). Effects of herbivores on grassland plant diversity. Trends in Ecology and Evolution, 13, 261–265.CrossRefGoogle ScholarPubMed
Olff, H. H., Ritchie, M. E. M. and Prins, H. H. T. H. (2002). Global environmental controls of diversity in large herbivores. Nature, 415, 901–904.CrossRefGoogle ScholarPubMed
Osem, Y., Perevolotsky, A. and Kigel, J. (2002). Grazing effect on diversity of annual plant communities in a semi-arid rangeland: interactions with small-scale spatial and temporal variation in primary productivity. Journal of Ecology, 90, 936–946.CrossRefGoogle Scholar
Paruelo, J. M., Jobbagy, E. G., Sala, O. E., Lauenroth, W. K. and Burke, I. C. (1998). Functional and structural convergence of temperate grassland and shrubland ecosystems. Ecological Applications, 8, 194–206.CrossRefGoogle Scholar
Peterson, D. and Reich, P. (2001). Prescribed fire in oak savanna: fire frequency effects on stand structure and dynamics. Ecological Applications, 11, 914–927.CrossRefGoogle Scholar
Phillips, O. L., Aragao, L. E. O. C., Lewis, S. L., et al. (2009). Drought sensitivity of the Amazon Rainforest. Science, 323, 1344–1347.CrossRefGoogle ScholarPubMed
Pianka, E. R. (1966). Latitudinal gradients in species diversity: a review of concepts. American Naturalist, 100, 33–46.CrossRefGoogle Scholar
Prins, H. and van der Jeugd, H. P. (1993). Herbivore population crashes and woodland structure in East Africa. Journal of Ecology, 81, 305–314.CrossRefGoogle Scholar
Proulx, M. and Mazumder, A. (1998). Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient-rich ecosystems. Ecology, 79, 2581–2592.CrossRefGoogle Scholar
Reich, P. B., Grigal, D. F., Aber, J. D. and Gower, S. T. (1997). Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils. Ecology, 78, 335–347.CrossRefGoogle Scholar
Reich, P., Peterson, D., Wedin, D. and Wrage, K. (2001). Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology, 82, 1703–1719.Google Scholar
Reichmann, L. G., Sala, O. E. and Peters, D. P. (2013). Precipitation legacies in desert grassland primary production occur through previous-year tiller density. Ecology, 94, 435–443.CrossRefGoogle ScholarPubMed
Riginos, C. C. and Grace, J. B. J. (2008). Savanna tree density, herbivores, and the herbaceous community: bottom-up vs. top-down effects. Ecology, 89, 2228–2238.CrossRefGoogle ScholarPubMed
Riginos, C., Grace, J. B., Augustine, D. J. and Young, T. P. (2009). Local versus landscape-scale effects of savanna trees on grasses. Journal of Ecology, 97, 1337–1345.CrossRefGoogle Scholar
Ripley, B. S., Donald, G., Osborne, C. P., Abraham, T. and Martin, T.( 2010). Experimental investigation of fire ecology in the C3 and C4 subspecies of Alloteropsis semialata. Journal of Ecology, 98, 1196–1203.CrossRefGoogle Scholar
Ripple, W. J. and Beschta, R. L. (2004). Wolves and the ecology of fear: can predation risk structure ecosystems? BioScience, 54, 755–766.CrossRefGoogle Scholar
Rossatto, D. R., da Silveira Lobo Sternberg, L. and Franco, A. C. (2012). The partitioning of water uptake between growth forms in a Neotropical savanna: do herbs exploit a third water source niche? Plant Biology, 15, 84–92.Google Scholar
Sala, O. E., Parton, W. J., Joyce, L. A. and Lauenroth, W. K. (1988). Primary production of the central grassland region of the United States. Ecology, 69, 40–45.CrossRefGoogle Scholar
Sala, O. E., Gherardi, L. A., Reichmann, L., Jobbagy, E. and Peters, D. (2012). Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philosophical Transactions of the Royal Society of London B, 367, 3135–3144.CrossRefGoogle ScholarPubMed
Sankaran, M., Ratnam, J. and Hanan, N. P. (2004). Tree-grass coexistence in savannas revisited – insights from an examination of assumptions and mechanisms invoked in existing models. Ecology Letters, 7, 480–490.CrossRefGoogle Scholar
Sankaran, M., Hanan, N., Scholes, R., et al. (2005). Determinants of woody cover in African savannas. Nature, 438, 846–849.CrossRefGoogle ScholarPubMed
Scheiter, S. and Higgins, S. I. (2009). Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach. Global Change Biology, 15, 2224–2246.CrossRefGoogle Scholar
Scholes, R. and Archer, S. (1997). Tree-grass interactions in savannas. Annual Review of Ecological Systems, 28, 517–544.CrossRefGoogle Scholar
Scholes, R. J. and Walker, B. H. (1993). An African Savanna: Synthesis of the Nylsvley Study.Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Schutz, A. E. N., Bond, W. J. and Cramer, M. D. (2009). Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna. Oecologia, 160, 235–246.CrossRefGoogle Scholar
Sensenig, R. L., Demment, M. W. and Laca, E. A. (2010). Allometric scaling predicts preferences for burned patches in a guild of East African grazers. Ecology, 91, 2898–2907.CrossRefGoogle Scholar
Sharam, G., Sinclair, A. R. E. and Turkington, R. (2006). Establishment of broad-leaved thickets in Serengeti, Tanzania: the influence of fire, browsers, grass competition, and elephants. Biotropica, 38, 599–605.CrossRefGoogle Scholar
Sinclair, A. R. E., Mduma, S. and Brashares, J. S. (2003). Patterns of predation in a diverse predator–prey system. Nature, 425, 288–290.CrossRefGoogle Scholar
Smit, I. P., Asner, G. P., Govender, N., et al. (2010). Effects of fire on woody vegetation structure in African savanna. Ecological Applications, 20, 1865–1875.CrossRefGoogle ScholarPubMed
Smit, I. P. J., Smit, C. F., Govender, N., Linde, M. V. D. and MacFadyen, S. (2013). Rainfall, geology and landscape position generate large-scale spatiotemporal fire pattern heterogeneity in an African savanna. Ecography, 36, 447–459.CrossRefGoogle Scholar
Smith, M. D., van Wilgen, B. W., Burns, C. E., et al. (2012). Long-term effects of fire frequency and season on herbaceous vegetation in savannas of the Kruger National Park, South Africa. Journal of Plant Ecology, 6, 71–83.Google Scholar
Staver, A. C. and Bond, W. J. (2014). Is there a ‘browse trap’? Dynamics of herbivore impacts on trees and grasses in an African savanna. Journal of Ecology, 102, 595–602.CrossRefGoogle Scholar
Staver, A. C. and Levin, S. A. (2012). Integrating theoretical climate and fire effects on savanna and forest systems. American Naturalist, 180, 211–224.CrossRefGoogle ScholarPubMed
Staver, A. C., Bond, W. J., Stock, W. D., van Rensburg, S. J. and Waldram, M. S. (2009). Browsing and fire interact to suppress tree density in an African savanna. Ecological Applications, 19, 1909–1919.CrossRefGoogle Scholar
Staver, A. C., Archibald, S. and Levin, S. A. (2011a). The global extent and determinants of savanna and forest as alternative biome states. Science, 334, 230–232.CrossRefGoogle ScholarPubMed
Staver, A. C., Archibald, S. and Levin, S. A. (2011b). Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states. Ecology, 92, 1063–1072.CrossRefGoogle ScholarPubMed
Staver, A. C., Bond, W. J. and February, E. C. (2011c). History matters: tree establishment variability and species turnover in an African savanna. Ecosphere, 2, art49.CrossRefGoogle Scholar
Staver, A. C., Bond, W. J., Cramer, M. D. and Wakeling, J. L. (2012). Top-down determinants of niche structure and adaptation among African acacias. Ecology Letters, 15, 673–679.CrossRefGoogle ScholarPubMed
Sternberg, L. (2001). Savanna-forest hysteresis in the tropics. Global Ecology and Biogeography, 10, 369–378.Google Scholar
Tilman, D. and Pacala, S. (1994). The maintenance of species richness in plant communities. In Species Diversity in Ecological Communities, ed. Ricklefs, R. E. and Schluter, D.. Chicago: University of Chicago Press, pp. 13–25.Google Scholar
Tilman, D., Wedin, D. and Knops, J. (1996). Productivity and sustainability influenced by biodiversity in grassland eco-systems. Nature, 379, 718–720.CrossRefGoogle Scholar
Trollope, W. S. W. and Tainton, N. M. (1986). Effect of fire intensity on the grass and bush components of the Eastern Cape thornveld. Journal of the Grassland Society of Southern Africa, 3, 37–42.CrossRefGoogle Scholar
Turner, W. C., Imologhome, P., Havarua, Z., et al. (2013). Soil ingestion, nutrition and the seasonality of anthrax in herbivores of Etosha National Park. Ecosphere, 4, art13.CrossRefGoogle Scholar
Viani, R. A. G., Rodrigues, R. R., Dawson, T. E. and Oliveira, R. S. (2011). Savanna soil fertility limits growth but not survival of tropical forest tree seedlings. Plant Soil, 349, 341–353.CrossRefGoogle Scholar
Visser, V., Woodward, F. I., Freckleton, R. P. and Osborne, C. P. (2012). Environmental factors determining the phylogenetic structure of C4 grass communities. Journal of Biogeography, 39, 232–246.CrossRefGoogle Scholar
Wakeling, J. L., Cramer, M. D. and Bond, W. J. (2012). The savanna-grassland “treeline”: why don't savanna trees occur in upland grasslands?Journal of Ecology, 100, 381–391.CrossRefGoogle Scholar
Waldram, M. S., Bond, W. J. and William, D Stock. (2008). Ecological engineering by a mega-grazer: White rhino impacts on a South African savanna. Ecosystems, 11, 101–112.CrossRefGoogle Scholar
Walter, H. (1971). Ecology of Tropical and Subtropical Vegetation. Edinburgh: Oliver and Boyd.Google Scholar
Watson, I., Westoby, M. and McR, A. (1997). Continuous and episodic components of demographic change in arid zone shrubs: models of two Eremophila species from Western Australia compared with published data on other species. Journal of Ecology, 85, 833–846.CrossRefGoogle Scholar
Werner, P. A. and Prior, L. D. (2013). Demography and growth of subadult savanna trees: interactions of life history, size, fire season, and grassy understory. Ecological Monographs, 83, 67–93.CrossRefGoogle Scholar
Whittaker, R. H. (1975). Communities and Ecosystems. 2nd edn. New York: Macmillan.Google Scholar
Wiegand, K., Jeltsch, F. and Ward, D. (2004). Minimum recruitment frequency in plants with episodic recruitment. Oecologia, 141, 1–10.CrossRefGoogle ScholarPubMed
Williams, R., Duff, G., Bowman, D. and Cook, G. (1996). Variation in the composition and structure of tropical savannas as a function of rainfall and soil texture along a large-scale climatic gradient in the Northern Territory, Australia. Journal of Biogeography, 23, 747–756.CrossRefGoogle Scholar
Yeo, J. J. (2005). Effects of grazing exclusion on rangeland vegetation and soils, East Central Idaho. Western North American Naturalist, 65, 91–102.Google Scholar
Young, H. S., McCauley, D. J., Helgen, K. M., et al. (2013). Effects of mammalian herbivore declines on plant communities: observations and experiments in an African savanna. Journal of Ecology, 101, 1030–1041.CrossRefGoogle Scholar
Young, T. (1994). Natural die-offs of large mammals: implications for conservation. Conservation Biology, 8, 410–418.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×