from Part II - Probability and chance
Published online by Cambridge University Press: 04 August 2010
Introduction
A cup of tea, left to its own, cools down while the surrounding air heats up until both have reached the same temperature, and a gas, confined to the left half of a room, uniformly spreads over the entire available space as soon as the confining wall is removed. Thermodynamics (TD) characterizes such processes in terms of an increase of thermodynamic entropy, which attains its maximum value at equilibrium, and the second law of thermodynamics posits that in an isolated system entropy cannot decrease. The aim of statistical mechanics (SM) is to explain the behaviour of these systems, in particular their conformity with the second law, in terms of the dynamical laws governing the individual molecules of which the systems are made up. In what follows these laws are assumed to be the ones of classical mechanics.
An influential suggestion of how this could be achieved was made by Ludwig Boltzmann (1877), and variants of it are currently regarded by many as the most promising option among the plethora of approaches to SM. Although these variants share a commitment to Boltzmann's basic ideas, they differ widely in how these ideas are implemented and used. These differences become most tangible when we look at how the different approaches deal with probabilities. There are two fundamentally different ways of introducing probabilities into SM, and even within these two groups there are important disparities as regards both technical and interpretational issues.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.