Book contents
- Frontmatter
- Contents
- Introduction
- 1 Completely bounded and completely positive maps
- 2 Completely bounded and completely positive maps
- 3 C*-algebras of discrete groups
- 4 C*-tensor products
- 5 Multiplicative domains of c.p. maps
- 6 Decomposable maps
- 7 Tensorizing maps and functorial properties
- 8 Biduals, injective von Neumann algebras, and C*-norms
- 9 Nuclear pairs, WEP, LLP, QWEP
- 10 Exactness and nuclearity
- 11 Traces and ultraproducts
- 12 The Connes embedding problem
- 13 Kirchberg’s conjecture
- 14 Equivalence of the two main questions
- 15 Equivalence with finite representability conjecture
- 16 Equivalence with Tsirelson’s problem
- 17 Property (T) and residually finite groups
- 18 The WEP does not imply the LLP
- 19 Other proofs that C(n)
- 20
Local embeddability into C and nonseparability of (OSn, dcb)- 21
WEP as an extension property- 22
Complex interpolation and maximal tensor product- 23
Haagerup’s characterizations of the WEP- 24
Full crossed products and failure of WEP for B ⊗min B- 25
Open problems- Appendix
Miscellaneous backgroundReferencesIndex - 20
13 - Kirchberg’s conjecture
Published online by Cambridge University Press: 10 February 2020
- Frontmatter
- Contents
- Introduction
- 1 Completely bounded and completely positive maps
- 2 Completely bounded and completely positive maps
- 3 C*-algebras of discrete groups
- 4 C*-tensor products
- 5 Multiplicative domains of c.p. maps
- 6 Decomposable maps
- 7 Tensorizing maps and functorial properties
- 8 Biduals, injective von Neumann algebras, and C*-norms
- 9 Nuclear pairs, WEP, LLP, QWEP
- 10 Exactness and nuclearity
- 11 Traces and ultraproducts
- 12 The Connes embedding problem
- 13 Kirchberg’s conjecture
- 14 Equivalence of the two main questions
- 15 Equivalence with finite representability conjecture
- 16 Equivalence with Tsirelson’s problem
- 17 Property (T) and residually finite groups
- 18 The WEP does not imply the LLP
- 19 Other proofs that C(n)
- 20 Local embeddability into C and nonseparability of (OSn, dcb)
- 21 WEP as an extension property
- 22 Complex interpolation and maximal tensor product
- 23 Haagerup’s characterizations of the WEP
- 24 Full crossed products and failure of WEP for B ⊗min B
- 25 Open problems
- Appendix Miscellaneous background
- References
- Index
Summary
Here we formulate the Connes embedding problem, whether any tracial probability space embeds in an ultraproduct of matricial ones. We also briefly describe the so-called hyperfinite factor R, with which one can reformulate the question as asking for an embedding in an ultrapower of R. Since the Connes problem is open even for the tracial probability spaces associated to discrete groups, this leads us to describe several related interesting classes of infinite groupssuch as residually finite, hyperlinear and sofic groups. We also discuss the so-called matrix models in terms of which the Connes problem can be naturally reformulated. Lastly, we give a quite transparent characterization of nuclear von Neumann algebras, which shows that there are very few of them.
- Type
- Chapter
- Information
- Tensor Products of C*-Algebras and Operator SpacesThe Connes–Kirchberg Problem, pp. 280 - 290Publisher: Cambridge University PressPrint publication year: 2020