Book contents
- Frontmatter
- Contents
- Preface
- List of abbreviations
- List of symbols
- 1 Atomic diffusion on surfaces
- 2 Determination of adatom movements
- 3 Atomic events in surface diffusion
- 4 Diffusion on one-dimensional surfaces
- 5 Diffusion on two-dimensional surfaces
- 6 Diffusion in special environments
- 7 Mechanism of cluster diffusion
- 8 Diffusivities of small clusters
- 9 Diffusion of large clusters
- 10 Atomic pair interactions
- Appendix: Preparation of samples for field ion microscopy
- Index
- References
5 - Diffusion on two-dimensional surfaces
Published online by Cambridge University Press: 06 July 2010
- Frontmatter
- Contents
- Preface
- List of abbreviations
- List of symbols
- 1 Atomic diffusion on surfaces
- 2 Determination of adatom movements
- 3 Atomic events in surface diffusion
- 4 Diffusion on one-dimensional surfaces
- 5 Diffusion on two-dimensional surfaces
- 6 Diffusion in special environments
- 7 Mechanism of cluster diffusion
- 8 Diffusivities of small clusters
- 9 Diffusion of large clusters
- 10 Atomic pair interactions
- Appendix: Preparation of samples for field ion microscopy
- Index
- References
Summary
In this chapter, we continue the task started in the last one: we will list diffusion characteristics determined on a variety of two-dimensional surfaces. For better orientation, ball models of fcc(111) and (100) planes have already been shown in Fig. 3.3, together with the (110), (100), and (111) planes of the bcc lattice in Fig. 3.4. In experiments it has been observed that on fcc(111) planes there are two types of adsorption sites: fcc (sometimes called bulk or stacking) and hcp (also referred to as surface or fault sites); these sites, indicated in Fig. 3.3b, can have quite different energetic properties. Two types of adsorption sites also exist on bcc(111) and hcp(0001) structures. However, on bcc(110) as well as on bcc(100) and fcc(100) planes, only one type of adsorption site has so far been observed, which makes it easier to follow adsorption on these surfaces.
Aluminum: Al(100)
Experimental work on two-dimensional surfaces of aluminum was long in coming, and was preceded by considerable theoretical work, with which we therefore begin here. The first effort, by Feibelman in 1987, was devoted to the Al(100) surface, and relied on local-density-functional theory (LDA–DFT). The primary aim of the work was to examine the binding energy of atom pairs, but he also estimated a barrier of 0.80 eV for the diffusive hopping of Al adatoms. Two years later, Feibelman investigated surface diffusion which takes place on Al(100) by exchange of an adatom with one from the substrate.
- Type
- Chapter
- Information
- Surface DiffusionMetals, Metal Atoms, and Clusters, pp. 261 - 422Publisher: Cambridge University PressPrint publication year: 2010
References
- 1
- Cited by