from Part 2 - Supersymmetry
Published online by Cambridge University Press: 17 May 2010
In a standard advanced field theory course, one learns about a number of symmetries: Poincaré invariance, global continuous symmetries, discrete symmetries, gauge symmetries, approximate and exact symmetries. These latter symmetries all have the property that they commute with Lorentz transformations, and in particular they commute with rotations. So the multiplets of the symmetries always contain particles of the same spin; in particular, they always consist of either bosons or fermions.
For a long time, it was believed that these were the only allowed types of symmetry; this statement was even embodied in a theorem, known as the Coleman– Mandula theorem. However, physicists studying theories based on strings stumbled on a symmetry which related fields of different spin. Others quickly worked out simple field theories with this new symmetry: supersymmetry.
Supersymmetric field theories can be formulated in dimensions up to eleven. These higher-dimensional theories will be important when we consider string theory. In this chapter, we consider theories in four dimensions. The supersymmetry charges, because they change spin, must themselves carry spin – they are spin-1/2 operators. They transform as doublets under the Lorentz group, just like the two component spinors X and X*. (The theory of two-component spinors is reviewed in Appendix A, where our notation, which is essentially that of the text by Wess and Bagger (1992), is explained). There can be 1, 2, 4 or 8 such spinors; correspondingly, the symmetry is said to be N = 1, 2, 4 or 8 supersymmetry. Like generators of an ordinary group, the supersymmetry generators obey an algebra; unlike an ordinary bosonic group, however, the algebra involves anticommutators as well as commutators (it is said to be “graded”).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.