Published online by Cambridge University Press: 01 June 2011
Introduction
Surface plasmon polariton (SPP) modes have attracted much interest in recent years. Although known and studied for over 100 years [1–3], the dream of confining light to dimensions smaller than its propagating wavelength has led the way towards technological possibilities not previously addressed, such as optical circuitry within ultra small computer processors [4, 5], or small biochemical sensors [6, 7]. Confinement of light to sub-wavelength dimensions is also a possibility when one considers the field aspects of the electromagnetic waves near surfaces (near-field phenomena). Add to this the interest in materials and structures exhibiting a negative refractive index for the purpose of increasing the resolution of optical microscopy [8], and it is no wonder that the area of electromagnetic (EM) propagation in sub-wavelength structures is enjoying a renewed interest. Whether the far-field aspects of periodic resonating metallo-dielectric structures are the true manifestations of a negative refractive index or simply a unique, but already known, near-field dispersion phenomenon may be debated [9]. Nonetheless, the near-field aspects of periodic sub-wavelength metallo-dielectric structures, and especially recent advances in nano-fabrication of structures at dimensions smaller than optical wavelengths, deserve a closer look.
Artificial dielectrics (ADs) constitute a class of man-made materials: the effective permittivity and permeability of a given dielectric material may be altered by imbedding metallic or semiconductive structures on scales smaller than the propagating wavelength. For example, one may alter the equivalent capacitance and inductance of microwave waveguides by the addition of a pattern of fine metallic features along the waveguide axis.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.