Published online by Cambridge University Press: 05 June 2012
In this book we have discussed how various aspects of learning in artificial neural networks may be quantified by using concepts and techniques developed in the statistical mechanics of disordered systems. These methods grew out of the desire to understand some strange low-temperature properties of disordered magnets; nevertheless their usefulness for and efficiency in the analysis of a completely different class of complex systems underlines the generality and strength of the principles of statistical mechanics.
In this final chapter we have collected some additional examples of non-physical complex systems for which an analysis using methods of statistical mechanics similar to those employed for the study of neural networks has given rise to new and interesting results. Compared with the previous chapters, the discussions in the present one will be somewhat more superficial – merely pointing to the qualitative analogies with the problems elucidated previously, rather than working out the consequences in full detail. Moreover, some of the problems we consider are strongly linked to information processing and artificial neural networks, whereas others are not. In all cases quenched random variables are used to represent complicated interactions which are not known in detail, and the typical behaviour in a properly defined thermodynamic limit is of particular interest.
Support vector machines
The main reason which prevents the perceptron from being a serious candidate for the solution of many real-world learning problems is that it can only implement linearly separable Boolean functions.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.