Published online by Cambridge University Press: 06 November 2009
As the density of a gas increases, free rotation of the molecules is gradually transformed into rotational diffusion of the molecular orientation. After ‘unfreezing’, rotational motion in molecular crystals also transforms into rotational diffusion. Although a phenomenological description of rotational diffusion with the Debye theory is universal, the gas-like and solid-like mechanisms are different in essence. In a dense gas the change of molecular orientation results from a sequence of short free rotations interrupted by collisions. In contrast, reorientation in solids results from jumps between various directions defined by a crystal structure, and in these orientational ‘sites’ libration occurs during intervals between jumps. We consider these mechanisms to be competing models of molecular rotation in liquids. The only way to discriminate between them is to compare the theory with experiment, which is mainly spectroscopic.
Line-shape analysis of the absorption or scattering spectra supplies us with normalized contours Gℓ(ω) which are the spectra of orientational correlation functions Kℓ = 〈Pℓ; [u(t)·u(0)]〉. The full set of averaged Legendre polynomials unambiguously defines the orientational relaxation of a linear or spherical rotator whose molecular axis is directed along the unit vector u(t). Unfortunately, only the lowest few Kℓ are available from spectroscopic investigation. The infrared (IR) rotovibrational spectroscopy of polar molecules gives us G1(ω – ωυ) which is composed of some rotational branches around vibrational frequency ωυ.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.