Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:49:42.611Z Has data issue: false hasContentIssue false

Part III - Mapping DNA Molecules at the Single-Molecule Level

Published online by Cambridge University Press:  05 May 2022

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc.
Raghu Kiran Appasani
Affiliation:
Psychiatrist, Neuroscientist, & Mental Health Advocate
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Single-Molecule Science
From Super-Resolution Microscopy to DNA Mapping and Diagnostics
, pp. 95 - 124
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alemany, A., Mossa, A., Junier, I., and Ritort, F. (2012). Experimental Free-Energy Measurements of Kinetic Molecular States Using Fluctuation Theorems. Nature Physics, 8(9), 688694.Google Scholar
Baldauf, C., Schneppenheim, R., Stacklies, W., et al. (2009). Shear-Induced Unfolding Activates von Willebrand Factor A2 Domain for Proteolysis. Journal of Thrombosis and Haemostasis, 7(12), 20962105.Google Scholar
Bennett, C. H. (1976). Efficient Estimation of Free-Energy Differences from Monte-Carlo Data. Journal of Computational Physics, 22(2), 245268.Google Scholar
Botello, E., Harris, N. C., Sargent, J., Chen, W. H., Lin, K. J., and Kiang, C. H. (2009). Temperature and Chemical Denaturant Dependence of Forced Unfolding of Titin I27. Journal of Physical Chemistry B,. 113(31), 1084510848.Google Scholar
Bouchiat, C., Wang, M. D., Allemand, J. F., Strick, T., Block, S. M., and Croquette, V. (1999). Estimating the Persistence Length of a Worm-Like Chain Molecule from Force-Extension Measurements. Biophysical Journal, 76(1), 409413.Google Scholar
Borgia, A., Williams, P. M., and Clarke, J. (2008). Single-Molecule Studies of Protein Folding. Annual Review of Biochemistry, 77, 101125.Google Scholar
Bryant, Z., Stone, M. D., Gore, J., Smith, S.B., Cozzarelli, N. R., and Bustamante, C. (2003). Structural Transitions and Elasticity from Torque Measurements on DNA. Nature, 424(6946), 338341.CrossRefGoogle ScholarPubMed
Bustamante, C., Marko, J. F., Siggia, E. D., and Smith, S. (1994). Entropic Elasticity of Lambda-Phage DNA. Science, 265(5178), 15991600.Google Scholar
Bustamante, C., Bryant, Z., and Smith, S. B. (2003). Ten Years of Tension: Single-Molecule DNA Mechanics. Nature, 421(6921), 423427.CrossRefGoogle ScholarPubMed
Carrion-Vazquez, M., Oberhauser, A. F., Fowler, S. B., et al. (1999). Mechanical and Chemical Unfolding of a Single Protein: A Comparison. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 36943699.Google Scholar
Chen, W. H., Wilson, J. D., Wijeratne, S. S., Southmayd, S. A., Lin, K. J., and Kiang, C. H. (2012). Principles of Single-Molecule Manipulation and Its Application in Biological Physics. International Journal of Modern Physics B, 26(13), 16.Google Scholar
Chen, W. S., Chen, W. H., Chen, Z. P., Gooding, A. A., Lin, K. J., and Kiang, C. H. (2010). Direct Observation of Multiple Pathways of Single-Stranded DNA Stretching. Physical Review Letters, 105(21), 218104.Google Scholar
Choi, H., Aboulfatova, K., Pownall, H. J., Cook, R., and Dong, J. F. (2007). Shear-Induced Disulfide Bond Formation Regulates Adhesion Activity of von Willebrand Factor. Journal of Biological Chemistry, 282(49), 3560435611.Google Scholar
Cluzel, P., Lebrun, A., Heller, C., et al. (1996). DNA: An Extensible Molecule. Science, 271(5250), 792794.Google Scholar
Collin, D., Ritort, F., Jarzynski, C., Smith, S. B., Tinoco, I., and Bustamante, C. (2005). Verification of the Crooks Fluctuation Theorem and Recovery of RNA Folding Free Energies. Nature, 437(7056), 231234.Google Scholar
Crooks, G. E. (1999). Entropy Production Fluctuation Theorem and the Nonequilibrium Work Relation for Free Energy Differences. Physical Review E, 60(3), 27212726.Google Scholar
Dobson, C. M., Sali, A., and Karplus, M. (1998). Protein Folding: A Perspective from Theory and Experiment. Angewandte Chemie-International Edition, 37(7), 868893.Google Scholar
Dong, J. F., Moake, J. L., Nolasco, L., et al. (2002). ADAMTS-13 Rapidly Cleaves Newly Secreted Ultralarge von Willebrand Factor Multimers on the Endothelial Surface under Flowing Conditions. Blood, 100(12), 40334039.Google Scholar
Fowler, W. E., Fretto, L. J., Hamilton, K. K., Erickson, H. P., and McKee, P. A. (1985). Substructure of Human von Willebrand Factor. Journal of Clinical Investigation. 76(4), 1491–500.Google Scholar
Frey, E. W., Li, J. Q., Wijeratne, S. S., and Kiang, C. H. (2015). Reconstructing Multiple Free Energy Pathways of DNA Stretching from Single Molecule Experiments. Journal of Physical Chemistry B, 119(16), 51325135.CrossRefGoogle ScholarPubMed
Goddard, N. L., Bonnet, G., Krichevsky, O., and Libchaber, A. (2000). Sequence Dependent Rigidity of Single Stranded DNA. Physical Review Letters, 85(11), 24002403.Google Scholar
Grantcharova, V., Alm, E. J., Baker, D., and Horwich, A. L. (2001). Mechanisms of Protein Folding. Current Opinion in Structural Biology, 11(1), 7082.Google Scholar
Gupta, A. N., Vincent, A., Neupane, K., Yu, H., Wang, F., and Woodside, M. T. (2011). Experimental Validation of Free-Energy-Landscape Reconstruction from Non-Equilibrium Single-Molecule Force Spectroscopy Measurements. Nature Physics, 7(8), 631634.Google Scholar
Hanson, J. A., Duderstadt, K., Watkins, L. P., et al. ( 2007). Illuminating the Mechanistic Roles of Enzyme Conformational Dynamics. Proceedings of the National Academy of Sciences of the United States of America, 104(46), 1805518060.CrossRefGoogle ScholarPubMed
Harris, N. C., Song, Y., and Kiang, C. H. (2007). Experimental Free Energy Surface Reconstruction from Single-Molecule Force Spectroscopy Using Jarzynski's Equality. Physical Review Letters, 99(6), 068101068104.Google Scholar
Hummer, G. and Szabo, A. (2005). Free Energy Surfaces from Single-Molecule Force Spectroscopy. Accounts of Chemical Research, 38(7), 504513.Google Scholar
Jakobi, A. J., Mashaghi, A., Tans, S. J., and Huizinga, E. G. (2011). Calcium Modulates Force Sensing by the von Willebrand Factor A2 Domain. Nature Communications, 2, 385.Google Scholar
Jarzynski, C. (1997). Nonequilibrium Equality for Free Energy Differences. Physical Review Letters, 78(14), 26902693.Google Scholar
Ke, C., Humeniuk, M., S-Gracz, H., and Marszalek, P. E. (2007). Direct Measurements of Base Stacking Interactions in DNA by Single-Molecule Atomic-Force Spectroscopy. Physical Review Letters, 99(1), 018302.Google Scholar
Kellermayer, M. S. Z. and Grama, L. (2002). Stretching and Visualizing Titin Molecules: Combining Structure, Dynamics and Mechanics. Journal of Muscle Research and Cell Motility, 23(5–6), 499511.CrossRefGoogle ScholarPubMed
Kellermayer, M. S. Z., Smith, S. B., Granzier, H. L., and Bustamante, C. (1997). Folding-Unfolding Transitions in Single Titin Molecules Characterized with Laser Tweezers. Science, 276(5315), 11121116.Google Scholar
King, G. A., Gross, P., Bockelmann, U., Modesti, M., Wuite, G. J. L., and Peterman, E. J. G. (2013). Revealing the Competition between Peeled ssDNA, Melting Bubbles, and S-DNA during DNA Overstretching Using Fluorescence Microscopy. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3859–3864.Google Scholar
Kosynkin, D. V., Higginbotham, A. L, Sinitskii, A., et al. (2009). Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons. Nature, 458(7240), 872876.CrossRefGoogle ScholarPubMed
Leger, J. F., Robert, J., Bourdieu, L., Chatenay, D., and Marko, J. F. (1998). RecA Binding to a Single Double-Stranded DNA Molecule: A Possible Role of DNA Conformational Fluctuations. Proceedings of the National Academy of Sciences of the United States of America, 95(21), 12295–12299.Google Scholar
Li, J. Q., Wijeratne, S. S., Qiu, X. Y., and Kiang, C. H. (2015). DNA under Force: Mechanics, Electrostatics, and Hydration. Nanomaterials, 5(1), 246267.Google Scholar
Liang, Y., van der Valk, R. A., Dame, R. T., Roos, W. H., and Wuite, G. J. L. (2017). Probing the Mechanical Stability of Bridged DNA-H-NS Protein Complexes by Single-Molecule AFM Pulling. Scientific Reports, 7(1), 15275.Google Scholar
Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I., and Bustamante, C. (2002). Equilibrium Information from Nonequilibrium Measurements in an Experimental Test of Jarzynski's Equality. Science, 296(5574), 18321835.Google Scholar
Lippok, S., Obser, T., Muller, J. P., et al. (2013). Exponential Size Distribution of von Willebrand Factor. Biophysical Journal, 105(5), 12081216.Google Scholar
Merkel, R., Nassoy, P., Leung, A., Ritchie, K., and Evans, E. (1999). Energy Landscapes of Receptor-Ligand Bonds Explored with Dynamic Force Spectroscopy. Nature, 397(6714), 5053.CrossRefGoogle ScholarPubMed
Neuman, K. C. and Nagy, A. (2008). Single-Molecule Force Spectroscopy: Optical Tweezers, Magnetic Tweezers and Atomic Force Microscopy. Nature Methods, 5(6), 491505.Google Scholar
Neupane, K., Solanki, A., Sosova, I., Belov, M., and Woodside, M.T. (2014). Diverse Metastable Structures Formed by Small Oligomers of Alpha-Synuclein Probed by Force Spectroscopy. Plos One, 9(1), e86495.Google Scholar
Ngo, T. T. M., Zhang, Q. C., Zhou, R. B., Yodh, J. G., and Ha, T. (2015). Asymmetric Unwrapping of Nucleosomes under Tension Directed by DNA Local Flexibility. Cell, 160(6), 1135–1144.CrossRefGoogle Scholar
Onuchic, J. N., LutheySchulten, Z., and Wolynes, P. G. (1997). Theory of Protein Folding: The Energy Landscape Perspective. Annual Review of Physical Chemistry, 48, 545600.CrossRefGoogle ScholarPubMed
Prevost, C. and Takahashi, M. (2003). Geometry of the DNA Strands within the RecA Nucleofilament: Role in Homologous Recombination. Quarterly Reviews of Biophysics, 36(4), 429453.Google Scholar
Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., and Gaub, H. E. (1997). Reversible Unfolding of Individual Titin Immunoglobulin Domains by AFM. Science, 276(5315), 11091112.Google Scholar
Rief, M., Clausen-Schaumann, H., and Gaub, H. E. (1999). Sequence-Dependent Mechanics of Single DNA Molecules. Nature Structural Biology, 6(4), 346349.Google Scholar
Ruggeri, Z. M. and Zimmerman, T. S. (1987). von Willebrand Factor and von Willebrand Disease. Blood, 70(4), 895904.Google Scholar
Sadler, J. E. (1998). Biochemistry and Genetics of von Willebrand Factor. Annual Review of Biochemistry, 67, 395424.Google Scholar
Sadler, J. E. (2005). New Concepts in von Willebrand Disease. Annual Review of Medicine, 56, 173–191.Google Scholar
Schneider, S. W., Nuschele, S., Wixforth, A., et al. (2007). Shear-Induced Unfolding Triggers Adhesion of von Willebrand Factor Fibers. Proceedings of the National Academy of Sciences of the United States of America, 104(19), 78997903.Google Scholar
Siedlecki, C. A., Lestini, B. J., Kottke-Marchant, K., Eppell, S. J., Wilson, D. L. and Marchant, R. E. (1996). Shear-Dependent Changes in the Three-Dimensional Structure of Human von Willebrand Factor. Blood, 88(8), 29392950.Google Scholar
Sing, C. E. and Alexander-Katz, A. (2010). Elongational Flow Induces the Unfolding of von Willebrand Factor at Physiological Flow Rates. Biophysical Journal, 98(9), L35L37.Google Scholar
Smith, B. L., Schaffer, T. E., Viani, M., et al. (1999). Molecular Mechanistic Origin of the Toughness of Natural Adhesives, Fibres and Composites. Nature, 399(6738), 761763.CrossRefGoogle Scholar
Stigler, J., Ziegler, F., Gieseke, A., Gebhardt, J. C. M., and Rief, M. (2011). The Complex Folding Network of Single Calmodulin Molecules. Science, 334(6055), 512516.Google Scholar
Wijeratne, S. S., Botello, E., Yeh, H. C., et al. (2013). Mechanical Activation of a Multimeric Adhesive Protein through Domain Conformational Change. Physical Review Letters, 110(10), 108102.Google Scholar
Wijeratne, S. S., Li, J. Q., Yeh, H. C., et al. (2016). Single-Molecule Force Measurements of the Polymerizing Dimeric Subunit of von Willebrand Factor. Physical Review E, 93(1), 012410.CrossRefGoogle ScholarPubMed
Woodside, M. T. and Block, S. M. (2014). Reconstructing Folding Energy Landscapes by Single-Molecule Force Spectroscopy. Annual Review of Biophysics, 43, 1939.Google Scholar
Yang, H., Luo, G. B., Karnchanaphanurach, P., et al. (2003). Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer. Science, 302(5643), 262266.Google Scholar
Yi, L. J., Zhang, Y. Y., Wang, C. M., and Chang, T. C. (2014). Temperature-Induced Unfolding of Scrolled Graphene and Folded Graphene. Journal of Applied Physics, 115(20), 204307.Google Scholar
Yu, H., Liu, X., Neupane, K., et al. (2012). Direct Observation of Multiple Misfolding Pathways in a Single Prion Protein Molecule. Proceedings of the National Academy of Sciences of the United States of America, 109(14), 52835288.Google Scholar
Zang, J. F., Ryu, S., Pugno, N., et al. (2013). Multifunctionality and Control of the Crumpling and Unfolding of Large-Area Graphene. Nature Materials, 12(4), 321325.Google Scholar
Zhang, X. H., Halvorsen, K., Zhang, C. Z., Wong, W. P., and Springer, T. A. (2009). Mechanoenzymatic Cleavage of the Ultralarge Vascular Protein von Willebrand Factor. Science, 324(5932), 13301334.Google Scholar
Zhang, X. H., Chen, H., Fu, H. X., Doyle, P. S., and Yan, J. (2012). Two Distinct Overstretched DNA Structures Revealed by Single-Molecule Thermodynamics Measurements. Proceedings of the National Academy of Sciences of the United States of America, 109(21), 81038108.Google Scholar

References

Ando, T., Kodera, N., Takai, E., et al. (2001). A High-Speed Atomic Force Microscope for Studying Biological Macromolecules. Proceedings of the National Academy of Science, U.S.A., 98, 1246812472.Google Scholar
Ando, T., Uchihashi, T., and Scheuring, S. (2014). Filming Biomolecular Processes by High-Speed Atomic Force Microscopy. Chemical Reviews, 114, 31203188.Google Scholar
Archakov, A. I., Ivanov, Y. D., Lisitsa, A. V., and Zgoda, V. G. (2007). AFM Fishing Nanotechnology Is the Way to Reverse the Avogadro Number in Proteomics. Proteomics, 7 , 49.Google Scholar
Bailo, E. and Deckert, V. (2008). Tip-Enhanced Raman Spectroscopy of Single RNA Strands: Towards a Novel Direct-Sequencing Method. Angewandte Chemie International Edition, 47, 16581661.Google Scholar
Barrena, E., Kopta, S., Ogletree, D. F., Charych, D. H. , and Salmeron, M. (1999). Relationship between Friction and Molecular Structure: Alkylsilane Lubricant Films under Pressure. Physical Review Letters, 82, 28802883.Google Scholar
Binnig, G. and Rohrer, H. (1982). Scanning Tunneling Microscopy. Helvetica Physica Acta, 55, 726735.Google Scholar
Binnig, G., Quate, C. F., and Gerber, C. (1986). Atomic force microscope, Physical Review Letters, 56, 930933.Google Scholar
Biomarkers Definition Working Group (2001). Biomarkers and Surrogate Endpoints: Preferred Definitions and Conceptual Framework. Clinical Pharmacology and Therapeutics, 69, 8995.Google Scholar
Churnside, A. B., Sullan, R. M. A., Nguyen, D. M., et al. (2012). Routine and Timely Sub-picoNewton Force Stability and Precision for Biological Applications of Atomic Force Microscopy. Nano Letters, 12, 35573561.Google Scholar
de Klein, A., van Kessel, A. G., Grosveld, G., et al. (1982). A Cellular Oncogene Is Translocated to the Philadelphia Chromosome in Chronic Myelocytic Leukaemia, Nature, 300, 765767.Google Scholar
Drake, B., Prater, C. B., Weisenhorn, A. L., et al. (1989). Imaging Crystals, Polymers, and Processes in Water with the Atomic Force Microscope. Science, 243, 15861589.Google Scholar
Dufrêne, Y. F., Martinez-Martin, D., Medalsy, I., Alsteens, D., and Müller, D. J. (2013). Multiparametric Imaging of Biological Systems by Force-Distance Curve-Based AFM. Nature Methods, 10, 847854.Google Scholar
Dufrêne, Y. F., Ando, T., Garcia, R., et al. (2017). Imaging Modes of Atomic Force Microscopy for Application in Molecular and Cell Biology. Nature Nanotechnology, 12, 295307.Google Scholar
Eifert, A. and Kranz, C. (2014). Hyphenating Atomic Force Microscopy. Analytical Chemistry, 86, 51905200.Google Scholar
Fernandez, J. M. and Li, H. B. (2004). Force-Clamp Spectroscopy Monitors the Folding Trajectory of a Single Protein. Science, 303, 16741678.CrossRefGoogle ScholarPubMed
Giessibl, F. J. (1995). Atomic-Resolution of the Silicon (111)-(7×7) Surface by Atomic Force Microscopy. Science, 267, 6871.Google Scholar
Greenleaf, W. J., and Block, S. M. (2006). Single-Molecule, Motion-Based DNA Sequencing Using RNA Polymerase. Science, 313, 801.Google Scholar
Gruter, R. R., Voros, J., and Zambelli, T. (2013). FluidFM as a Lithography Tool in Liquid: Spatially Controlled Deposition of Fluorescent Nanoparticles. Nanoscale, 5, 10971104.CrossRefGoogle ScholarPubMed
Hansma, P. K., Cleveland, J. P., Radmacher, M., et al. (1994). Tapping Mode Atomic Force Microscopy in Liquids. Applied Physics Letters, 64, 17381740.Google Scholar
Hinterdorfer, P., Baumgartner, W., Gruber, H. J., Schilcher, K., and Schindler, H. (1996). Detection and Localization of Individual Antibody-Antigen Recognition Events by Atomic Force Microscopy. Proceedings of the National Academy of Science U. S. A., 93, 34773481.Google Scholar
Hoh, J. H., Lal, R., John, S. A., Revel, J. P., and Arnsdorf, M. F. (1991). Atomic Force Microscopy and Dissection of Gap-Junctions. Science, 253, 14051408.CrossRefGoogle ScholarPubMed
Hughes, T., Janssen, J. W. G., Morgan, G., et al. (1990). False-Positive Results with PCR to Detect Leukaemia-Specific Transcript. Lancet, 335, 10371038.Google Scholar
Hulka, B. S. (1990). Overview of Biological Markers, In Hulka, B. S., Griffith, J. D., Wilcosky, T. C., eds., Biological Markers in Epidemiology. Oxford University Press, New York: 315.Google Scholar
Jacobs, B. K. M., Goetghebeur, E., and Clement, L. (2014). Impact of Variance Components on Reliability of Absolute Quantification Using Digital PCR. BMC Bioinformatics, 15, 283.Google Scholar
Kim, Y., Kim, E-S., Lee, Y., et al. (2014). Reading Single DNA with DNA Polymerase Followed by Atomic Force Microscopy. Journal of the American Chemical Society, 136, 1375413760.Google Scholar
Kodera, N., Yamamoto, D., Ishikawa, R., and Ando, T. (2010). Video Imaging of Walking Myosin V by High-Speed Atomic Force Microscopy. Nature, 468, 7276.Google Scholar
Lee, Y., Kwon, S. H., Kim, Y., Lee, J. B., and Park, J. W. (2013). Mapping of Surface-Immobilized DNA with Force-Based Atomic Force Microscopy. Analytical Chemistry., 85, 40454050.Google Scholar
Lee, Y., Kim, Y., Lee, D., Roy, D., and Park, J. W. (2016). Quantification of Fewer than Ten Copies of a DNA Biomarker without Amplification or Labeling, Journal of the American Chemical Society, 138, 70757081.Google Scholar
Marszalek, P. E., Li, H. B., and Fernandez, J. M. (2001). Fingerprinting Polysaccharides with Single-Molecule Atomic Force Microscopy. Nature Biotechnology, 19, 258262.Google Scholar
Medalsy, I., Hensen, U., and Müller, D. J. (2011). Imaging and Quantifying Chemical and Physical Properties of Native Proteins at Molecular Resolution by Force-Volume AFM. Angewandte Chemie International Edition, 50, 1210312108.CrossRefGoogle ScholarPubMed
Neuman, K. C. and Nagy, A. (2008). Single-Molecule Force Spectroscopy: Optical Tweezers, Magnetic Tweezers and Atomic Force Microscopy. Nature Methods, 5, 491505.Google Scholar
Perera, F. P. and Weinstein, I. B. (2000). Molecular Epidemiology: Recent Advances and Future Directions. Carcinogenesis, 21, 517524.Google Scholar
Puntheeranurak, T., Neundlinger, I. Kinne, R. K. H., and Hinterdorfer, P. (2011). Single-Molecule Recognition Force Spectroscopy of Transmembrane Transporters on Living Cells. Nature Protocols, 6, 14431452.Google Scholar
Raab, A., Han, W. H., Badt, D., et al. (1999). Antibody Recognition Imaging by Force Microscopy. Nature Biotechnology, 17, 901905.CrossRefGoogle ScholarPubMed
Roy, D. and Park, J. W. (2015). Spatially Nanoscale-Controlled Functional Surfaces toward Efficient Bioactive Platforms. Journal of Materials Chemistry B, 3, 51355149.CrossRefGoogle ScholarPubMed
Sahin, O., Magonov, S., Su, C., Quate, C. F., and Solgaard, O. (2007). An Atomic Force Microscope Tip Designed to Measure Time-Varying Nanomechanical Forces. Nature Nanotechnology, 2, 507514.CrossRefGoogle ScholarPubMed
Saini, S. (2016). PSA and Beyond: Alternative Prostate Cancer Biomarkers, Cell Oncology, 39, 97106.Google Scholar
Shan, Y. and Wang, H. (2015). The Structure and Function of Cell Membranes Examined by Atomic Force Microscopy and Single-Molecule Force Spectroscopy. Chemical Society Reviews, 44 , 36173638.CrossRefGoogle ScholarPubMed
Vogelstein, B. and Kinzler, K. W. (1999). Digital PCR, Proceedings of the National Academy of Science USA, 96, 92369241.Google Scholar
Yersin, A., Hirling, H., Kasas, S., et al. (2007). Elastic Properties of the Cell Surface and Trafficking of Single AMPA Receptors in Living Hippocampal Neurons. Biophysical Journal, 92, 44824489.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×