Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T13:28:41.110Z Has data issue: false hasContentIssue false

Part V - Learning and Development

Published online by Cambridge University Press:  27 October 2016

Sukhvinder S. Obhi
Affiliation:
McMaster University, Ontario
Emily S. Cross
Affiliation:
Bangor University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Shared Representations
Sensorimotor Foundations of Social Life
, pp. 437 - 562
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abramson, L., McClelland, D. C., Brown, D., & Kelner, S. (1991). Alexithymic characteristics and metabolic control in diabetic and healthy adults. Journal of Nervous and Mental Disease, 179(8), 179.CrossRefGoogle ScholarPubMed
Adolphs, R., Sears, L., & Piven, J. (2001). Abnormal processing of social information from faces in autism. Journal of Cognitive Neuroscience, 13(2), 232240.CrossRefGoogle ScholarPubMed
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorder (5th edition). Arlington, VA: American Psychiatric Publishing.Google Scholar
Ashwin, C., Chapman, E., Colle, L., & Baron-Cohen, S. (2006). Impaired recognition of negative basic emotions in autism: A test of the amygdala theory. Social Neuroscience, 1(3–4), 349363.CrossRefGoogle ScholarPubMed
Avramova, Y. R., & Inbar, Y. (2013). Emotion and moral judgment. Wiley Interdisciplinary Reviews: Cognitive Science, 4(2), 169178.Google ScholarPubMed
Baron-Cohen, S., & Wheelwright, S. (2004). The empathy quotient: An investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. Journal of Autism and Developmental Disorders, 34(2), 163175.Google ScholarPubMed
Berthoz, S., & Hill, E. L. (2005). The validity of using self-reports to assess emotion regulation abilities in adults with autism spectrum disorder. European Psychiatry: The Journal of the Association of European Psychiatrists, 20(3), 291298.Google ScholarPubMed
Bird, G., & Cook, R. (2013). Mixed emotions: The contribution of alexithymia to the emotional symptoms of autism. Translational Psychiatry, 3(7), e285.Google Scholar
Bird, G., Press, C., & Richardson, D. C. (2011). The role of alexithymia in reduced eye-fixation in autism spectrum conditions. Journal of Autism and Developmental Disorders, 41(11), 15561564.Google ScholarPubMed
Bird, G., Silani, G., Brindley, R., White, S., Frith, U., & Singer, T. (2010). Empathic brain responses in insula are modulated by levels of alexithymia but not autism. Brain: A Journal of Neurology, 133(Pt 5), 15151525.Google Scholar
Bird, G., & Viding, E. (2014). The self to other model of empathy: Providing a new framework for understanding empathy impairments in psychopathy, autism, and alexithymia. Neuroscience & Biobehavioral Reviews, 47, 520–532.Google Scholar
Blair, R. J. R. (2007). The amygdala and ventromedial prefrontal cortex in morality and psychopathy. Trends in Cognitive Sciences, 11(9), 387392.Google ScholarPubMed
Brewer, R., Cook, R., & Bird, G. (under review). Alexithymia predicts general deficits of interoception across clinical disorders.Google Scholar
Brewer, R., Cook, R., Cardi, V., Treasure, J., & Bird, G. (2015a). Emotion recognition deficits in eating disorders are explained by co-occurring alexithymia. Royal Society Open Science, 2(1), 1–12.CrossRefGoogle ScholarPubMed
Brewer, R., Cook, R., Catmur, C., & Bird, G. (under review). Alexithymia explains atypical empathy in eating disorders.Google Scholar
Brewer, R., Marsh, A. A., Catmur, C., Cardinale, E. M., Stoycos, S., et al. (2015b). Judgments of moral acceptability in autism are predicted by co-occurring alexithymia. Journal of Abnormal Psychology, 124(3), 589595.CrossRefGoogle Scholar
Bydlowski, S., Corcos, M., Jeammet, P., Paterniti, S., Berthoz, S., et al. (2005). Emotion-processing deficits in eating disorders. International Journal of Eating Disorders, 37(4), 321329.Google ScholarPubMed
Bzdok, D., Schilbach, L., Vogeley, K., Schneider, K., Laird, A. R., et al. (2012). Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Structure & Function, 217(4), 783796.Google ScholarPubMed
Caglar-Nazali, H. P., Corfield, F., Cardi, V., Ambwani, S., Leppanen, J., et al. (2014). A systematic review and meta-analysis of ‘systems for social processes’ in eating disorders. Neuroscience and Biobehavioral Reviews, 42, 5592.Google ScholarPubMed
Calvo, M. G., & Marrero, H. (2009). Visual search of emotional faces: The role of affective content and featural distinctiveness. Cognition & Emotion, 23(4), 782806.Google Scholar
Carano, A., De Berardis, D., Gambi, F., Di Paolo, C., Campanella, D., et al. (2006). Alexithymia and body image in adult outpatients with binge eating disorder. International Journal of Eating Disorders, 39, 332340.Google ScholarPubMed
Carta, M. G., Sancassiani, F., Pippia, V., Bhat, K. M., Sardu, C., & Meloni, L. (2013). Alexithymia is associated with delayed treatment seeking in acute myocardial infarction. Psychotherapy and Psychosomatics, 82(3), 190192.Google ScholarPubMed
Castelli, F. (2005). Understanding emotions from standardized facial expressions in autism and normal development. Autism: The International Journal of Research and Practice, 9(4), 428449.Google ScholarPubMed
Cheng, Y., Lin, C.-P., Liu, H.-L., Hsu, Y.-Y., Lim, K.-E., et al. (2007). Expertise modulates the perception of pain in others. Current Biology, 17(19), 17081713.Google ScholarPubMed
Connan, F., Campbell, I. C., Katzman, M., Lightman, S. L., & Treasure, J. (2003). A neurodevelopmental model for anorexia nervosa. Physiology and Behaviour, 79, 1324.Google ScholarPubMed
Cook, J., Barbalat, G., & Blakemore, S.-J. (2012). Top-down modulation of the perception of other people in schizophrenia and autism. Frontiers in Human Neuroscience, 6, 175.Google ScholarPubMed
Cook, R., Brewer, R., Shah, P., & Bird, G. (2013). Alexithymia, not autism, predicts poor recognition of emotional facial expressions. Psychological Science, 24(5), 723732.Google Scholar
Cooper, M. J., Wells, A., & Todd, G. (2004). A cognitive model of bulimia nervosa. British Journal of Clinical Psychology, 43(Pt 1), 116.Google ScholarPubMed
Craig, A. D. (2009). How do you feel now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 5970.Google Scholar
De Berardis, D., Carano, A., Gambi, F., Campanella, D., Giannetti, P., et al. (2007). Alexithymia and its relationships with body checking and body image in a non-clinical female sample. Eating Behaviors, 8(3), 296304.Google Scholar
Decety, J., & Cacioppo, S. (2012). The speed of morality: A high-density electrical neuroimaging study. Journal of Neurophysiology, 108(11), 30683072.Google ScholarPubMed
Decety, J., & Lamm, C. (2006). Human empathy through the lens of social neuroscience. Scientific World Journal, 6, 11461163.Google ScholarPubMed
Di Martino, A., Ross, K., Uddin, L. Q., Sklar, A. B., Castellanos, F. X., & Milham, M. P. (2009). Functional brain correlates of social and nonsocial processes in autism spectrum disorders: An activation likelihood estimation meta-analysis. Biological Psychiatry, 65(1), 6374.Google ScholarPubMed
Dziobek, I., Rogers, K., Fleck, S., Bahnemann, M., Heekeren, H. R., et al. (2008). Dissociation of cognitive and emotional empathy in adults with Asperger syndrome using the Multifaceted Empathy Test (MET). Journal of Autism and Developmental Disorders, 38(3), 464473.Google ScholarPubMed
Eisenberg, N. (2000). Emotion, regulation, and moral development. Annual Review of Psychology, 51, 665697.Google ScholarPubMed
Eizaguirre, A. E., Saenz de Cabezon, A. O., Ochoa de Alda, I., Olariaga, L. J., & Juaniz, M. (2004). Alexithymia and its relationships with anxiety and depression in eating disorders. Personality and Individual Differences, 36, 321331.Google Scholar
Esparon, J., & Yellowlees, A. J. (1992). Perceived parental rearing practices and eating disorders. British Review of Bulimia & Anorexia Nervosa, 6(1), 3945.Google Scholar
Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 8593.Google ScholarPubMed
Fairburn, C. G., & Harrison, P. J. (2003). Eating disorders. Lancet, 361(9355), 407416.Google ScholarPubMed
FeldmanHall, O., Dalgleish, T., & Mobbs, D. (2013). Alexithymia decreases altruism in real social decisions. Cortex, 49(3), 899904.CrossRefGoogle ScholarPubMed
Fitzsimmons, J., Kubicki, M., & Shenton, M. E. (2013). Review of functional and anatomical brain connectivity findings in schizophrenia. Current Opinion in Psychiatry, 26(2), 172187.Google ScholarPubMed
Frith, C. (2003). What do imaging studies tell us about the neural basis of autism? Novartis Foundation Symposium, 251, 149166.Google ScholarPubMed
Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: Developmental disconnection syndromes. Current Opinion in Neurobiology, 17(1), 103111.Google ScholarPubMed
Gleichgerrcht, E., Torralva, T., Rattazzi, A., Marenco, V., Roca, M., & Manes, F. (2013). Selective impairment of cognitive empathy for moral judgment in adults with high functioning autism. Social Cognitive and Affective Neuroscience, 8(7), 780788.Google ScholarPubMed
Golan, O., Baron-Cohen, S., Hill, J. J., & Rutherford, M. D. (2007). The ‘Reading the Mind in the Voice’ test–revised: A study of complex emotion recognition in adults with and without autism spectrum conditions. Journal of Autism and Developmental Disorders, 37(6), 10961106.Google ScholarPubMed
Greene, J. (2003). From neural ‘is’ to moral ‘ought’: What are the moral implications of neuroscientific moral psychology? Nature Reviews Neuroscience, 4(10), 846849.Google ScholarPubMed
Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M., & Cohen, J. D. (2004). The neural bases of cognitive conflict and control in moral judgment. Neuron, 44(2), 389400.Google ScholarPubMed
Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., & Cohen, J. D. (2001). An fMRI investigation of emotional engagement in moral judgment. Science, 293(5537), 21052108.Google ScholarPubMed
Grossman, J. B., Klin, A., Carter, A. S., & Volkmar, F. R. (2000). Verbal bias in recognition of facial emotions in children with Asperger syndrome. Journal of Child Psychology and Psychiatry, 41(3), 369379.Google ScholarPubMed
Grynberg, D., Chang, B., Corneille, O., Maurage, P., Vermeulen, N., et al. (2012). Alexithymia and the processing of emotional facial expressions (EFEs): Systematic review, unanswered questions and further perspectives. PloS One, 7(8), e42429.Google ScholarPubMed
Grynberg, D., Luminet, O., Corneille, O., Grèzes, J., & Berthoz, S. (2010). Alexithymia in the interpersonal domain: A general deficit of empathy? Personality and Individual Differences, 49(8), 845850.Google Scholar
Gu, X., & Han, S. (2007). Attention and reality constraints on the neural processes of empathy for pain. NeuroImage, 36(1), 256267.Google ScholarPubMed
Haidt, J. (2001). The emotional dog and its rational tail: A social intuitionist approach to moral judgment. Psychological Review, 108(4), 814834.Google ScholarPubMed
Hare, R. D. (1991). The Hare psychopathy checklist – revised. North Tonawanda, NY: Multi-Health Systems.Google Scholar
Harms, M. B., Martin, A., & Wallace, G. L. (2010). Facial emotion recognition in autism spectrum disorders: A review of behavioral and neuroimaging studies. Neuropsychology Review, 20(3), 290322.Google ScholarPubMed
Harrison, A., Sullivan, S., Tchanturia, K., & Treasure, J. (2009). Emotion recognition and regulation in anorexia nervosa. Clinical Psychology and Psychotherapy, 356(16), 348356.Google ScholarPubMed
Harrison, A., Sullivan, S., Tchanturia, K., (2010). Emotional functioning in eating disorders: Attentional bias, emotion recognition and emotion regulation. Psychological Medicine, 40(11), 18871897.Google ScholarPubMed
Heaton, P., Reichenbacher, L., Sauter, D., Allen, R., Scott, S., & Hill, E. (2012). Measuring the effects of alexithymia on perception of emotional vocalizations in autistic spectrum disorder and typical development. Psychological Medicine, 42, 24532459.Google ScholarPubMed
Herbert, B. M., Herbert, C., & Pollatos, O. (2011). On the relationship between interoceptive awareness and alexithymia: Is interoceptive awareness related to emotional awareness? Journal of Personality, 79(5), 11491175.Google ScholarPubMed
Hill, E., Berthoz, S., & Frith, U. (2004). Brief report: Cognitive processing of own emotions in individuals with autistic spectrum disorder and in their relatives. Journal of Autism and Developmental Disorders, 34(2), 229235.Google ScholarPubMed
Hoffman, M. L. (2001). Empathy and moral development: Implications for caring and justice. Cambridge: Cambridge University Press.Google Scholar
Humphreys, K., Minshew, N., Leonard, G. L., & Behrmann, M. (2007). A fine-grained analysis of facial expression processing in high-functioning adults with autism. Neuropsychologia, 45(4), 685695.Google ScholarPubMed
Ihme, K., Dannlowski, U., Lichev, V., Stuhrmann, A., Grotegerd, D., et al. (2013). Alexithymia is related to differences in gray matter volume: A voxel-based morphometry study. Brain Research, 1491, 6067.Google ScholarPubMed
Jackson, P. L., Meltzoff, A. N., & Decety, J. (2005). How do we perceive the pain of others? A window into the neural processes involved in empathy. NeuroImage, 24(3), 771779.Google ScholarPubMed
Jessimer, M., & Markham, R. (1997). Alexithymia: A right hemisphere dysfunction specific to recognition of certain facial expressions? Brain and Cognition, 34(2), 246258.Google ScholarPubMed
Johnson, S. A., Filliter, J. H., & Murphy, R. R. (2009). Discrepancies between self- and parent-perceptions of autistic traits and empathy in high functioning children and adolescents on the autism spectrum. Journal of Autism and Developmental Disorders, 39(12), 17061714.Google ScholarPubMed
Jonason, P. K., & Krause, L. (2013). The emotional deficits associated with the Dark Triad traits: Cognitive empathy, affective empathy, and alexithymia. Personality and Individual Differences, 55(5), 532537.Google Scholar
Jones, C. R. G., Pickles, A., Falcaro, M., Marsden, A. J. S., Happé, F., et al. (2011). A multimodal approach to emotion recognition ability in autism spectrum disorders. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 52(3), 275285.Google ScholarPubMed
Jones, L., Harmer, C., Cowen, P., & Cooper, M. (2008). Emotional face processing in women with high and low levels of eating disorder related symptoms. Eating Behaviors, 9(4), 389397.Google ScholarPubMed
Kano, M., Fukado, S., Jiro, G., Kamachi, M., Tagawa, M., et al. (2003). Specific brain processing of facial expressions in people with alexithymia: An H215O-PET study. Brain, 126(6), 14741484.Google Scholar
Kenyon, L. W., Ketterer, M. W., Gheorghiade, M., & Goldstein, S. (1991). Psychological factors related to prehospital delay during acute myocardial infarction. Circulation, 84(5), 19691976.Google ScholarPubMed
Kessler, H., Schwarze, M., Filipic, S., Traue, H. C., & Wietersheim, J. von. (2006). Alexithymia and facial emotion recognition in patients with eating disorders. International Journal of Eating Disorders, 39(3), 245251.Google ScholarPubMed
Kucharska-Pietura, K., Nikolaou, V., Masiak, M., & Treasure, J. (2004). The recognition of emotion in the faces and voice of anorexia nervosa. International Journal of Eating Disorders, 35(1), 4247.Google ScholarPubMed
Lamm, C., Decety, J., & Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 54(3), 2492–502.Google ScholarPubMed
Lamm, C., Nusbaum, H. C., Meltzoff, A. N., & Decety, J. (2007). What are you feeling? Using functional magnetic resonance imaging to assess the modulation of sensory and affective responses during empathy for pain. PloS One, 2(12), e1292.Google ScholarPubMed
Lamm, C., & Singer, T. (2010). The role of anterior insular cortex in social emotions. Brain Structure & Function, 214(5–6), 579591.Google Scholar
Lane, R. D., Ahern, G. L., Schwartz, G. E., & Kaszniak, A. W. (1997). Is alexithymia the emotional equivalent of blindsight? Biological Psychiatry, 42(9), 834844.Google ScholarPubMed
Legenbauer, T., Vocks, S., & Ruddel, H. (2008). Emotion recognition, emotional awareness and cognitive bias in individuals with bulimia nervosa. Journal of Clinical Psychology, 64(6), 687702.Google ScholarPubMed
Leyfer, O. T., Folstein, S. E., Bacalman, S., Davis, N. O., Dinh, E., et al. (2006). Comorbid psychiatric disorders in children with autism: Interview development and rates of disorders. Journal of Autism and Developmental Disorders, 36(7), 849861.Google ScholarPubMed
Li, J., Zhu, L., & Gummerum, M. (2014). The relationship between moral judgment and cooperation in children with high-functioning autism. Scientific Reports, 4, 4314.Google ScholarPubMed
Linden, W., Wen, F., & Paulus, D. L. (1995). Measuring alexithymia: Reliability, validity, and prevalence. In Butcher, J. & Spielberger, C. (Eds.), Advances in personality assessment. Hillsdale, NJ: Lawrence Erlbaum, 5195.Google Scholar
Lombardo, M. V., Barnes, J. L., Wheelwright, S. J., & Baron-Cohen, S. (2007). Self-referential cognition and empathy in autism. PloS One, 2(9), e883.Google ScholarPubMed
Loveland, K. A., Tunali-Kotoski, B., Chen, Y. R., Ortegon, J., Pearson, D. A., et al. (1997). Emotion recognition in autism: Verbal and nonverbal information. Development and Psychopathology, 9(3), 579593.Google ScholarPubMed
Lyvers, M., Duric, N., & Thorberg, F. A. (2014). Caffeine use and alexithymia in university students. Journal of Psychoactive Drugs, 46(4), 340346.Google ScholarPubMed
McDonald, P. W., & Prkachin, K. M. (1990). The expression and perception of facial emotion in alexithymia: A pilot study. Psychosomatic Medicine, 52(2), 199210.Google ScholarPubMed
Mendlewicz, L., Linkowski, P., Bazelmans, C., & Philippot, P. (2005). Decoding emotional facial expressions in depressed and anorexic patients. Journal of Affective Disorders, 89(13), 195199.Google ScholarPubMed
Mesquita, B., & Fijda, N. H. (1992). Cultural variations in emotions: A review. Psychological Bulletin, 112(2), 179204.Google ScholarPubMed
Minio-Paluello, I., Baron-Cohen, S., Avenanti, A., Walsh, V., & Aglioti, S. M. (2009). Absence of embodied empathy during pain observation in Asperger syndrome. Biological Psychiatry, 65(1), 5562.Google ScholarPubMed
Moll, J., de Oliveira-Souza, R., Eslinger, P. J., Bramati, I. E., Mourão-Miranda, J., et al. (2002). The neural correlates of moral sensitivity: A functional magnetic resonance imaging investigation of basic and moral emotions. Journal of Neuroscience, 22(7), 27302736.Google ScholarPubMed
Moran, J. M., Young, L. L., Saxe, R., Lee, S. M., O’Young, D., et al. (2011). Impaired theory of mind for moral judgment in high-functioning autism. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 26882692.Google ScholarPubMed
Moriguchi, Y., Decety, J., Ohnishi, T., Maeda, M., Mori, T., et al. (2007). Empathy and judging others’ pain: An fMRI study of alexithymia. Cerebral Cortex, 17(9), 22232234.Google ScholarPubMed
Nemiah, J. C., Freyberger, H. J., & Sifneos, P. E. (1976). Alexithymia: A view of the psychosomatic process. In Hill, O. W. (Ed.), Modern trends in psychosomatic research, Volume 3. London: Butterworths, 430439.Google Scholar
Oldershaw, A., Hambrook, D., Stahl, D., Tchanturia, K., Treasure, J., & Schmidt, U. (2011). The socio-emotional processing stream in anorexia nervosa. Neuroscience and Biobehavioral Reviews, 35(3), 970988.Google ScholarPubMed
Overton, A., Selway, S., Strongman, K., & Houston, M. (2005). Eating disorders? The regulation of positive as well as negative emotion experience. Journal of Clinical Psychology in Medical Settings, 12(1), 3956.Google Scholar
Parker, J. D. A., Taylor, G. J., & Bagby, R. (1993). Alexithymia and the recognition of facial expressions of emotion. Psychotherapy and Psychosomatics, 59, 197202.Google ScholarPubMed
Parker, P. D., Prkachin, K. M., & Prkachin, G. C. (2005). Processing of facial expressions of negative emotion in alexithymia: The influence of temporal constraint. Journal of Personality, 73(4), 10871107.Google ScholarPubMed
Patil, I., & Silani, G. (2014a). Alexithymia increases moral acceptability of accidental harms. Journal of Cognitive Psychology, 26(5), 118.Google Scholar
Patil, I., (2014b). Reduced empathic concern leads to utilitarian moral judgments in trait alexithymia. Frontiers in Psychology, 5, 501.Google ScholarPubMed
Pauc, R. (2005). Comorbidity of dyslexia, dyspraxia, attention deficit disorder (ADD), attention deficit hyperactive disorder (ADHD), obsessive compulsive disorder (OCD) and Tourette’s syndrome in children: A prospective epidemiological study. Clinical Chiropractic, 8(4), 189198.Google Scholar
Pizarro, D. (2000). Nothing more than feelings? The role of emotions in moral judgment. Journal for the Theory of Social Behaviour, 30(4), 355375.Google Scholar
Pollatos, O., Herbert, B. M., Schandry, R., & Gramann, K. (2008). Impaired central processing of emotional faces in anorexia nervosa. Psychosomatic Medicine, 70(6), 701708.Google ScholarPubMed
Preston, S. D., & de Waal, F. B. M. (2002). Empathy: Its ultimate and proximate bases. Behavioral and Brain Sciences, 25, 171.Google ScholarPubMed
Prkachin, G. C., Casey, C., & Prkachin, K. M. (2009). Alexithymia and perception of facial expressions of emotion. Personality and Individual Differences, 46(4), 412417.Google Scholar
Quinton, S., & Wagner, H. L. (2005). Alexithymia, ambivalence over emotional expression, and eating attitudes. Personality and Individual Differences, 38(5), 11631173.Google Scholar
Ridout, N., Thom, C., & Wallis, D. J. (2010). Emotion recognition and alexithymia in females with non-clinical disordered eating. Eating Behaviors, 11(1), 15.Google ScholarPubMed
Rogers, K., Dziobek, I., Hassenstab, J., Wolf, O. T., & Convit, A. (2007). Who cares? Revisiting empathy in Asperger syndrome. Journal of Autism and Developmental Disorders, 37(4), 709715.Google ScholarPubMed
Rozenstein, M. H., Latzer, Y., Stein, D., & Eviatar, Z. (2011). Perception of emotion and bilateral advantage in women with eating disorders, their healthy sisters, and nonrelated healthy controls. Journal of Affective Disorders, 134(1–3), 386395.Google ScholarPubMed
Rump, K. M., Giovannelli, J. L., Minshew, N. J., & Strauss, M. S. (2009). The development of emotion recognition in individuals with autism. Child Development, 80(5), 14341447.Google ScholarPubMed
Saarela, M. V, Hlushchuk, Y., Williams, A. C. D. C., Schürmann, M., Kalso, E., & Hari, R. (2007). The compassionate brain: Humans detect intensity of pain from another’s face. Cerebral Cortex, 17(1), 230237.Google ScholarPubMed
Salminen, J. K., Saarija, S., & Rela, E. A. A. (1999). Prevalence of alexithymia and its association with sociodemographic variables in the general population of Finland. Journal of Psychosomatic Research, 46(1), 7582.Google ScholarPubMed
Schmidt, U., & Treasure, J. (2006). Anorexia nervosa: Valued and visible. A cognitive-interpersonal maintenance model and its implications for research and practice. British Journal of Clinical Psychology, 45(3), 343366.Google ScholarPubMed
Schneider, K., Pauly, K. D., Gossen, A., Mevissen, L., Michel, T. M., et al. (2013). Neural correlates of moral reasoning in autism spectrum disorder. Social Cognitive and Affective Neuroscience, 8(6), 702710.Google ScholarPubMed
Shah, P., Hall, R., Catmur, C., & Bird, G. (2016). Alexithymia, not autism, is associated with impaired interoception. Cortex, 81, 215-220.Google Scholar
Shamay-Tsoory, S. G., Tomer, R., Yaniv, S., & Aharon-Peretz, J. (2002). Empathy deficits in Asperger syndrome: A cognitive profile. Neurocase, 8(3), 245252.Google ScholarPubMed
Shulman, C., Guberman, A., Shiling, N., & Bauminger, N. (2012). Moral and social reasoning in autism spectrum disorders. Journal of Autism and Developmental Disorders, 42(7), 13641376.Google ScholarPubMed
Silani, G., Bird, G., Brindley, R., Singer, T., Frith, C., & Frith, U. (2008). Levels of emotional awareness and autism: An fMRI study. Social Neuroscience, 3(2), 97112.Google ScholarPubMed
Singer, T., Critchley, H. D., & Preuschoff, K. (2009). A common role of insula in feelings, empathy and uncertainty. Trends in Cognitive Sciences, 13(8), 334340.Google ScholarPubMed
Singer, T., & Lamm, C. (2009). The social neuroscience of empathy. Annals of the New York Academy of Sciences, 1156, 81–96.Google Scholar
Singer, T., Seymour, B., O’Doherty, J., Kaube, H., Dolan, R. J., & Frith, C. D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303(5661), 11571162.Google Scholar
Singer, T., Seymour, B., O’Doherty, J. P., Stephan, K. E., Dolan, R. J., & Frith, C. D. (2006). Empathic neural responses are modulated by the perceived fairness of others. Nature, 439(7075), 466469.Google ScholarPubMed
Singleton, N., Gatward, R., & Meltzer, H. (September 23, 1998). Psychiatric morbidity among prisoners in England and Wales. London: Stationery Office.Google Scholar
Soderstrom, H. (2003). Psychopathy as a disorder of empathy. European Child & Adolescent Psychiatry, 12(5), 249252.Google ScholarPubMed
Swart, M., Kortekaas, R., & Aleman, A. (2009). Dealing with feelings: Characterization of trait alexithymia on emotion regulation strategies and cognitive-emotional processing. PloS One, 4(6), e5751.Google ScholarPubMed
Uddin, L. Q., & Menon, V. (2009). The anterior insula in autism: Under-connected and under-examined. Neuroscience and Biobehavioral Reviews, 33(8), 11981203.Google ScholarPubMed
Vignemont, F. de, & Singer, T. (2006). The empathic brain: How, when and why? Trends in Cognitive Sciences, 10(10), 435441.Google ScholarPubMed
Yirmiya, N., Sigman, M. D., Kasari, C., & Mundy, P. (1992). Empathy and cognition in high-functioning children with autism. Child Development, 63(1), 150160.Google ScholarPubMed
Young, L., Koenigs, M., Kruepke, M., & Newman, J. P. (2012). Psychopathy increases perceived moral permissibility of accidents. Journal of Abnormal Psychology, 121(3), 659667.Google ScholarPubMed
Zalla, T., Barlassina, L., Buon, M., & Leboyer, M. (2011). Moral judgment in adults with autism spectrum disorders. Cognition, 121(1), 115126.Google ScholarPubMed
Zonnevijlle-Bender, M. J. S., van Goozen, S. H. M., Cohen-Kettenis, P. T., van Elburg, A., & van Engeland, H. (2002). Do adolescent anorexia nervosa patients have deficits in emotional functioning? European Child & Adolescent Psychiatry, 11(1), 3842.Google ScholarPubMed
Zonnevylle-Bender, M. J. S., van Goozen, S. H. M., Cohen-Kettenis, P. T., van Elburg, A., & van Engeland, H. (2004). Emotional functioning in adolescent anorexia nervosa patients: A controlled study. European Child & Adolescent Psychiatry, 13(1), 2834.Google ScholarPubMed

References

Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11(9), 11091116.CrossRefGoogle ScholarPubMed
Aziz-Zadeh, L., Koski, L., Zaidel, E., Mazziotta, J., & Iacoboni, M. (2006). Lateralization of the human mirror neuron system. Journal of Neuroscience, 26(11), 29642970. doi: 10.1523/JNEUROSCI.2921-05.2006.CrossRefGoogle ScholarPubMed
Babiloni, C., Marzano, N., Infarinato, F., Iacoboni, M., Rizza, G., et al. (2010). ‘Neural efficiency’ of experts’ brain during judgment of actions: A high-resolution EEG study in elite and amateur karate athletes. Behavioural Brain Research, 207(2), 466475. doi: 10.1016/j.bbr.2009.10.034.CrossRefGoogle ScholarPubMed
Balser, N., Lorey, B., Pilgramm, S., Stark, R., Bischoff, M., et al. (2014). Prediction of human actions: Expertise and task-related effects on neural activation of the action observation network. Human Brain Mapping, 8(568). doi: 10.1002/hbm.22455.Google Scholar
Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., et al. (2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. NeuroImage, 30(3), 917926. doi: 10.1016/j.neuroimage.2005.10.044.CrossRefGoogle ScholarPubMed
Bird, G., Catmur, C., Silani, G., Frith, C., & Frith, U. (2006). Attention does not modulate neural responses to social stimuli in autism spectrum disorders. NeuroImage, 31(4), 16141624. doi: 10.1016/j.neuroimage.2006.02.037.CrossRefGoogle Scholar
Bonini, L., Rozzi, S., Serventi, F. U., Simone, L., Ferrari, P. F., & Fogassi, L. (2010). Ventral premotor and inferior parietal cortices make distinct contribution to action organization and intention understanding. Cerebral Cortex, 20(6), 13721385. doi: 10.1093/cercor/bhp200.CrossRefGoogle ScholarPubMed
Brass, M., Bekkering, H., Wohlschläger, A., & Prinz, W. (2000). Compatibility between observed and executed finger movements: Comparing symbolic, spatial, and imitative cues. Brain and Cognition, 44(2), 124143. doi: 10.1006/brcg.2000.1225.Google Scholar
Brass, M., & Heyes, C. (2005). Imitation: Is cognitive neuroscience solving the correspondence problem? Trends in Cognitive Sciences, 9(10), 489495. doi: 10.1016/j.tics.2005.08.007.CrossRefGoogle ScholarPubMed
Brass, M., & Muhle-Karbe, P. (2014). More than associations: An ideomotor perspective on mirror neurons. Behavioral and Brain Sciences, 37(2), 195196. doi: 10.1017/S0140525X13002239.CrossRefGoogle ScholarPubMed
Buccino, G., Vogt, S., Ritzl, A., Fink, G., & Zilles, K. (2004). Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron, 42, 323334.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex, 15(8), 12431249. doi: 10.1093/cercor/bhi007.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16(19), 19051910. doi: 10.1016/j.cub.2006.07.065.CrossRefGoogle ScholarPubMed
Casile, A., Caggiano, V., & Ferrari, P. F. (2011). The mirror neuron system: A fresh view. The Neuroscientist, 17(5), 524538. doi: 10.1177/1073858410392239.CrossRefGoogle ScholarPubMed
Catmur, C., Gillmeister, H., Bird, G., Liepelt, R., Brass, M., & Heyes, C. (2008). Through the looking glass: Counter-mirror activation following incompatible sensorimotor learning. European Journal of Neuroscience, 28(6), 12081215. doi: 10.1111/j.1460-9568.2008.06419.x.CrossRefGoogle ScholarPubMed
Catmur, C., Mars, R. B., Rushworth, M. F., & Heyes, C. (2011). Making mirrors: Premotor cortex stimulation enhances mirror and counter-mirror motor facilitation. Journal of Cognitive Neuroscience, 23(9), 23522362. doi: 10.1162/jocn.2010.21590.CrossRefGoogle ScholarPubMed
Catmur, C., Press, C., Cook, R., Bird, G., & Heyes, C. M. (2014). Mirror neurons: Tests and testability. Behavioral and Brain Sciences, 37(2), 221241.CrossRefGoogle ScholarPubMed
Catmur, C., Walsh, V., & Heyes, C. (2007). Sensorimotor learning configures the human mirror system. Current Biology, 17(17), 15271531. doi: 10.1016/j.cub.2007.08.006.CrossRefGoogle ScholarPubMed
Cavallo, A., Heyes, C., Becchio, C., Bird, G., & Catmur, C. (2014). Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation. Social Cognitive and Affective Neuroscience, 9(8), 10821088. doi: 10.1093/scan/nst085.CrossRefGoogle ScholarPubMed
Chong, T. T.-J., Cunnington, R., Williams, M. A., Kanwisher, N., & Mattingley, J. B. (2008). fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Current Biology, 18(20), 15761580. doi: 10.1016/j.cub.2008.08.068.CrossRefGoogle ScholarPubMed
Cook, R., Bird, G., Catmur, C., Press, C., & Heyes, C. M. (2014). Mirror neurons: From origin to function. Behavioral and Brain Sciences, 37(2), 177192. doi: 10.1017/S0140525X13000903.CrossRefGoogle ScholarPubMed
Cook, R., Dickinson, A., & Heyes, C. (2012). Contextual Modulation of Mirror and Countermirror Sensorimotor Associations. Journal of Experimental Psychology. General, 141(4), 774787. doi:10.1037/a0027561CrossRefGoogle ScholarPubMed
Cook, R., Press, C., Dickinson, A., & Heyes, C. (2010). Acquisition of automatic imitation is sensitive to sensorimotor contingency. Journal of Experimental Psychology: Human Perception and Performance, 36(4), 840852. doi: 10.1037/a0019256.Google ScholarPubMed
Cosmides, L., & Tooby, J. (1994). Beyond intuition and instinct blindness: Toward an evolutionarily rigorous cognitive science. Cognition, 50(1–3), 4177.CrossRefGoogle ScholarPubMed
Cross, E. S., Hamilton, A. F. D. C., & Grafton, S. T. (2006). Building a motor simulation de novo: Observation of dance by dancers. NeuroImage, 31(3), 12571267. doi: 10.1016/j.neuroimage.2006.01.033.CrossRefGoogle ScholarPubMed
Cross, E. S., Hamilton, A. F. D. C., Kraemer, D. J. M., Kelley, W. M., & Grafton, S. T. (2009). Dissociable substrates for body motion and physical experience in the human action observation network. European Journal of Neuroscience, 30(7), 13831392. doi: 10.1111/j.1460-9568.2009.06941.x.CrossRefGoogle ScholarPubMed
D’Ausilio, A., Altenmüller, E., Olivetti Belardinelli, M., & Lotze, M. (2006). Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece. European Journal of Neuroscience, 24(3), 955958. doi: 10.1111/j.1460-9568.2006.04960.x.CrossRefGoogle ScholarPubMed
Del Giudice, M., Manera, V., & Keysers, C. (2009). Programmed to learn? The ontogeny of mirror neurons. Developmental Science, 12(2), 350363. doi: 10.1111/j.1467-7687.2008.00783.x.CrossRefGoogle ScholarPubMed
Dushanova, J., & Donoghue, J. (2010). Neurons in primary motor cortex engaged during action observation. European Journal of Neuroscience, 31(2), 386398. doi: 10.1111/j.1460-9568.2009.07067.x.CrossRefGoogle ScholarPubMed
Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73(6), 26082611.CrossRefGoogle ScholarPubMed
Ferrari, P. F., Rozzi, S., & Fogassi, L. (2005). Mirror neurons responding to observation of actions made with tools in monkey ventral premotor cortex. Journal of Cognitive Neuroscience, 17(2), 212226. doi: 10.1162/0898929053124910.CrossRefGoogle ScholarPubMed
Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308(5722), 662667. doi: 10.1126/science.1106138.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593609.Google Scholar
Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2(12), 493501.CrossRefGoogle ScholarPubMed
Gillmeister, H., Catmur, C., Liepelt, R., Brass, M., & Heyes, C. (2008). Experience-based priming of body parts: A study of action imitation. Brain Research, 1217, 157170. doi: 10.1016/j.brainres.2007.12.076.CrossRefGoogle ScholarPubMed
Greenwald, A. G. (1970). Sensory feedback mechanisms in performance control: With special reference to the ideomotor mechanism. Psychological Review, 77, 7399.CrossRefGoogle Scholar
Haslinger, B., Erhard, P., Altenmüller, E., Schroeder, U., Boecker, H., & Ceballos-Baumann, A. O. (2005). Transmodal sensorimotor networks during action observation in professional pianists. Journal of Cognitive Neuroscience, 17(2), 282293. doi: 10.1162/0898929053124893.CrossRefGoogle ScholarPubMed
Heyes, C. (2001). Causes and consequences of imitation. Trends in Cognitive Sciences, 5(6), 253261.CrossRefGoogle ScholarPubMed
Heyes, C. (2010). Where do mirror neurons come from? Neuroscience and Biobehavioral Reviews, 34(4), 575583. doi: 10.1016/j.neubiorev.2009.11.007.CrossRefGoogle ScholarPubMed
Heyes, C. (2011). Automatic imitation. Psychological Bulletin, 137(3), 463483. doi: 10.1037/a0022288.CrossRefGoogle ScholarPubMed
Heyes, C., Bird, G., Johnson, H., & Haggard, P. (2005). Experience modulates automatic imitation. Brain Research: Cognitive Brain Research, 22(2), 233240. doi: 10.1016/j.cogbrainres.2004.09.009.Google ScholarPubMed
Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849878.CrossRefGoogle ScholarPubMed
Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 25262528.CrossRefGoogle ScholarPubMed
James, W. (1890). The principles of psychology. New York: Macmillan.Google Scholar
Jones, S. S. (1996). Imitation or exploration? Young infants’ matching of adults’ oral gestures. Child Development, 67(5), 19521969.CrossRefGoogle ScholarPubMed
Jones, S. S. (2006). Exploration or imitation? The effect of music on 4-week-old infants’ tongue protrusions. Infant Behavior and Development, 29(1), 126130. doi: 10.1016/j.infbeh.2005.08.004.CrossRefGoogle ScholarPubMed
Keysers, C., & Perrett, D. I. (2004). Demystifying social cognition: A Hebbian perspective. Trends in Cognitive Sciences, 8(11), 501507. doi: 10.1016/j.tics.2004.09.005.CrossRefGoogle ScholarPubMed
Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., & Frith, C. D. (2009). Evidence of mirror neurons in human inferior frontal gyrus. Journal of Neuroscience, 29(32), 1015310159. doi: 10.1523/JNEUROSCI.2668-09.2009.CrossRefGoogle ScholarPubMed
Kim, Y.-T., Seo, J.-H., Song, H.-J., Yoo, D.-S., Lee, H. J., et al. (2011). Neural correlates related to action observation in expert archers. Behavioural Brain Research, 223(2), 342347. doi: 10.1016/j.bbr.2011.04.053.CrossRefGoogle ScholarPubMed
Koch, G., Versace, V., Bonnì, S., Lupo, F., Lo Gerfo, E., et al. (2010). Resonance of cortico–cortical connections of the motor system with the observation of goal directed grasping movements. Neuropsychologia, 48(12), 35133520. doi: 10.1016/j.neuropsychologia.2010.07.037.CrossRefGoogle ScholarPubMed
Kraskov, A., Dancause, N., Quallo, M. M., Shepherd, S., & Lemon, R. N. (2009). Corticospinal neurons in macaque ventral premotor cortex with mirror properties: A potential mechanism for action suppression? Neuron, 64(6), 922930. doi: 10.1016/j.neuron.2009.12.010.CrossRefGoogle ScholarPubMed
Landmann, C., Landi, S. M., Grafton, S. T., & Della-Maggiore, V. (2011). fMRI supports the sensorimotor theory of motor resonance. PLoS One, 6(11), e26859. doi: 10.1371/journal.pone.0026859.CrossRefGoogle ScholarPubMed
Liew, S.-L., Sheng, T., Margetis, J. L., & Aziz-Zadeh, L. (2013). Both novelty and expertise increase action observation network activity. Frontiers in Human Neuroscience, 7, 541. doi: 10.3389/fnhum.2013.00541.CrossRefGoogle ScholarPubMed
Margulis, E. H., Mlsna, L. M., Uppunda, A. K., Parrish, T. B., & Wong, P. C. M. (2009). Selective neurophysiologic responses to music in instrumentalists with different listening biographies. Human Brain Mapping, 30(1), 267275. doi: 10.1002/hbm.20503.CrossRefGoogle ScholarPubMed
Marshall, P. J., Young, T., & Meltzoff, A. N. (2011). Neural correlates of action observation and execution in 14-month-old infants: An event-related EEG desynchronization study. Developmental Science, 14(3), 474480. doi: 10.1111/j.1467-7687.2010.00991.x.CrossRefGoogle ScholarPubMed
Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology, 20, 118. doi: 10.1016/j.cub.2010.02.045.CrossRefGoogle ScholarPubMed
Oosterhof, N. N., Tipper, S. P., & Downing, P. E. (2012). Viewpoint (in)dependence of action representations: An MVPA study. Journal of Cognitive Neuroscience, 24(4), 975989. doi: 10.1162/jocn_a_00195.CrossRefGoogle ScholarPubMed
Orgs, G., Dombrowski, J.-H., Heil, M., & Jansen-Osmann, P. (2008). Expertise in dance modulates alpha/beta event-related desynchronization during action observation. European Journal of Neuroscience, 27(12), 33803384. doi: 10.1111/j.1460-9568.2008.06271.x.CrossRefGoogle ScholarPubMed
Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176180.CrossRefGoogle ScholarPubMed
Petroni, A., Baguear, F., & Della-Maggiore, V. (2010). Motor resonance may originate from sensorimotor experience. Journal of Neurophysiology, 104(4), 18671871. doi: 10.1152/jn.00386.2010.CrossRefGoogle ScholarPubMed
Pinker, S. (1997). How the mind works. Harmondsworth: Penguin.Google Scholar
Prather, J. F., Peters, S., Nowicki, S., & Mooney, R. (2008). Precise auditory–vocal mirroring in neurons for learned vocal communication. Nature, 451(7176), 305310. doi: 10.1038/nature06492.CrossRefGoogle ScholarPubMed
Press, C., Catmur, C., Cook, R., Widmann, H., Heyes, C., & Bird, G. (2012). fMRI evidence of ‘mirror’ responses to geometric shapes. PLoS One, 7(12), e51934. doi: 10.1371/journal.pone.0051934.CrossRefGoogle ScholarPubMed
Press, C., Gillmeister, H., & Heyes, C. (2007). Sensorimotor experience enhances automatic imitation of robotic action. Proceedings of the Royal Society B: Biological Sciences, 274(1625), 2509. doi: 10.1098/rspb.2007.0774.CrossRefGoogle ScholarPubMed
Ray, E., & Heyes, C. (2011). Imitation in infancy: The wealth of the stimulus. Developmental Science, 14(1), 92105. doi: 10.1111/j.1467-7687.2010.00961.x.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192. doi: 10.1146/annurev.neuro.27.070203.144230.CrossRefGoogle ScholarPubMed
Santiesteban, I., Banissy, M. J., Catmur, C., & Bird, G. (2012a). Enhancing social ability by stimulating right temporoparietal junction. Current Biology, 22(23), 22742277. doi: 10.1016/j.cub.2012.10.018.CrossRefGoogle ScholarPubMed
Santiesteban, I., White, S., Cook, J., Gilbert, S. J., Heyes, C., & Bird, G. (2012b). Training social cognition: From imitation to Theory of Mind. Cognition, 122(2), 228235. doi: 10.1016/j.cognition.2011.11.004.CrossRefGoogle ScholarPubMed
Sartori, L., Cavallo, A., Bucchioni, G., & Castiello, U. (2012). From simulation to reciprocity: The case of complementary actions. Social Neuroscience, 7(2), 146158. doi: 10.1080/17470919.2011.586579.CrossRefGoogle ScholarPubMed
Southgate, V., Johnson, M. H., Osborne, T., & Csibra, G. (2009). Predictive motor activation during action observation in human infants. Biology Letters, 5(6), 769772. doi: 10.1098/rsbl.2009.0474.CrossRefGoogle ScholarPubMed
Spengler, S., von Cramon, D. Y., & Brass, M. (2009). Control of shared representations relies on key processes involved in mental state attribution. Human Brain Mapping, 30(11), 37043718. doi: 10.1002/hbm.20800.CrossRefGoogle ScholarPubMed
Strafella, A. P., & Paus, T. (2000). Modulation of cortical excitability during action observation: A transcranial magnetic stimulation study. NeuroReport, 11(10), 22892292.CrossRefGoogle ScholarPubMed
Tanaka, S., & Inui, T. (2002). Cortical involvement for action imitation of hand/arm postures versus finger configurations: An fMRI study. NeuroReport, 13(13), 15991602.CrossRefGoogle ScholarPubMed
Tkach, D., Reimer, J., & Hatsopoulos, N. G. (2007). Congruent activity during action and action observation in motor cortex. Journal of Neuroscience, 27(48), 1324113250. doi: 10.1523/JNEUROSCI.2895-07.2007.CrossRefGoogle ScholarPubMed
Turati, C., Natale, E., Bolognini, N., Senna, I., Picozzi, M., et al. (2013). The early development of human mirror mechanisms: evidence from electromyographic recordings at 3 and 6 months. Developmental Science, 16(6), 793800. doi: 10.1111/desc.12066.CrossRefGoogle ScholarPubMed
Vigneswaran, G., Philipp, R., Lemon, R. N., & Kraskov, A. (2013). M1 corticospinal mirror neurons and their role in movement suppression during action observation. Current Biology, 23(3), 236243. doi: 10.1016/j.cub.2012.12.006.CrossRefGoogle ScholarPubMed
Vogt, S., Buccino, G., Wohlschläger, A. M., Canessa, N., Shah, N. J., et al. (2007). Prefrontal involvement in imitation learning of hand actions: Effects of practice and expertise. NeuroImage, 37(4), 13711383. doi: 10.1016/j.neuroimage.2007.07.005.CrossRefGoogle ScholarPubMed
Westermann, G., & Miranda, E. R. (2002). Modelling the development of mirror neurons for auditory–motor integration. Journal of New Music Research, 31(4), 367375. doi: 10.1076/jnmr.31.4.367.14166.CrossRefGoogle Scholar
Westermann, G., & Miranda, E. R. (2004). A new model of sensorimotor coupling in the development of speech. Brain and Language, 89(2), 393400. doi: 10.1016/S0093-934X(03)00345-6.CrossRefGoogle ScholarPubMed
Wiggett, A. J., Hudson, M., Tipper, S. P., & Downing, P. E. (2011). Learning associations between action and perception: Effects of incompatible training on body part and spatial priming. Brain and Cognition, 76(1), 8796. doi: 10.1016/j.bandc.2011.02.014.CrossRefGoogle ScholarPubMed

References

Abend, W., Bizzi, E., & Morasso, P. (1982). Human arm trajectory formation. Brain, 105(Pt 2), 331348.CrossRefGoogle ScholarPubMed
Annaz, D., Campbell, R., Coleman, M., Milne, E., & Swettenham, J. (2012). Young children with autism spectrum disorder do not preferentially attend to biological motion. Journal of Autism and Developmental Disorders, 42(3), 401408. doi: 10.1007/s10803-011-1256-3.CrossRefGoogle Scholar
Annaz, D., Remington, A., Milne, E., Coleman, M., Campbell, R., et al. (2010). Development of motion processing in children with autism. Developmental Science, 13(6), 826838. doi: 10.1111/j.1467-7687.2009.00939.x.CrossRefGoogle ScholarPubMed
Atkinson, A. P. (2009). Impaired recognition of emotions from body movements is associated with elevated motion coherence thresholds in autism spectrum disorders. Neuropsychologia, 47(13), 30233029. doi: 10.1016/j.neuropsychologia.2009.05.019.CrossRefGoogle ScholarPubMed
Avikainen, S., Wohlschläger, S., Liuhanen, S., Hänninen, R., & Hari, R. (2003). Impaired mirror-image imitation in Asperger and high-functioning autistic subjects. Current Biology, 13(4), 339341.CrossRefGoogle ScholarPubMed
Baaren, R. van, Holland, R., Kawakami, K., & van Knippenberg, A. (2004). Mimicry and prosocial behavior. Psychological Science: A Journal of the American Psychological Society, 15(1), 7174.CrossRefGoogle ScholarPubMed
Bach, P., & Tipper, S. P. (2007). Implicit action encoding influences personal-trait judgments. Cognition, 102(2), 151178. doi: 10.1016/j.cognition.2005.11.003.CrossRefGoogle ScholarPubMed
Bailenson, J., & Yee, N. (2005). Digital chameleons: Automatic assimilation of nonverbal gestures in immersive virtual environments. Psychological Science: A Journal of the American Psychological Society, 16(10), 814819. doi: 10.1111/j.1467-9280.2005.01619.x.CrossRefGoogle ScholarPubMed
Bailey, A., Luthert, P., Dean, A., Harding, B., Janota, I., et al. (1998). A clinicopathological study of autism. Brain, 121(5), 889905. doi: 10.1093/brain/121.5.889.CrossRefGoogle ScholarPubMed
Bauman, M. L. (1991). Microscopic neuroanatomic abnormalities in autism. Pediatrics, 87(5), 791796.CrossRefGoogle ScholarPubMed
Bauman, M. L., & Kemper, T. L. (2005). Neuroanatomic observations of the brain in autism: A review and future directions. International Journal of Developmental Neuroscience, 23(23), 183187. doi: 10.1016/j.ijdevneu.2004.09.006.CrossRefGoogle ScholarPubMed
Bertone, A., Mottron, L., Jelenic, P., & Faubert, J. (2003). Motion perception in autism: A complex issue. Journal of Cognitive Neuroscience, 15(2), 218225. doi: 10.1162/089892903321208150.CrossRefGoogle ScholarPubMed
Beversdorf, D. Q., Anderson, J. M., Manning, S. E., Anderson, S. L., Nordgren, R. E., et al. (2001). Brief report: Macrographia in high-functioning adults with autism spectrum disorder. Journal of Autism and Developmental Disorders, 31(1), 97101.CrossRefGoogle ScholarPubMed
Bird, G., & Cook, R. (2013). Mixed emotions: The contribution of alexithymia to the emotional symptoms of autism. Translational Psychiatry, 3, e285. doi: 10.1038/tp.2013.61.CrossRefGoogle Scholar
Bird, G., Leighton, J., Press, C., & Heyes, C. (2007). Intact automatic imitation of human and robot actions in autism spectrum disorders. Proceedings of the Royal Society B: Biological Sciences, 274(1628), 30273031. doi: 10.1098/rspb.2007.1019.CrossRefGoogle ScholarPubMed
Bird, G., Silani, G., Brindley, R., White, S., Frith, U., & Singer, T. (2010). Empathic brain responses in insula are modulated by levels of alexithymia but not autism. Brain, 133(Pt 5), 15151525. doi: 10.1093/brain/awq060.CrossRefGoogle Scholar
Blake, R, Turner, L., Smoski, M., Pozdol, S., & Stone, W. (2003). Visual recognition of biological motion is impaired in children with autism. Psychological Science, 14(2), 151157.CrossRefGoogle ScholarPubMed
Bouquet, C. A., Gaurier, V., Shipley, T., Toussaint, L., & Blandin, Y. (2007). Influence of the perception of biological or non-biological motion on movement execution. Journal of Sports Sciences, 25(5), 519530. doi: 10.1080/02640410600946803.CrossRefGoogle ScholarPubMed
Brass, M., Bekkering, H., & Prinz, W. (2001). Movement observation affects movement execution in a simple response task. Acta Psychologica, 106(12), 322.CrossRefGoogle Scholar
Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., et al. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. European Journal of Neuroscience, 13(2), 400404.CrossRefGoogle Scholar
Catmur, C., Walsh, V., & Heyes, C. (2009). Associative sequence learning: The role of experience in the development of imitation and the mirror system. Proceedings of the Royal Society B: Biological Sciences, 364(1528), 23692380. doi: 10.1098/rstb.2009.0048.Google ScholarPubMed
Cattaneo, L., Fabbri-Destro, M., Boria, S., Pieraccini, C., Monti, A., et al. (2007). Impairment of action chains in autism and its possible role in intention understanding. Proceedings of the National Academy of Sciences of the United States of America, 104(45), 1782517830. doi: 10.1073/pnas.0706273104.CrossRefGoogle ScholarPubMed
Chaminade, T., Franklin, D., Oztop, E., & Cheng, G. (2005). Motor interference between humans and humanoid robots: Effect of biological and artificial motion. Proceedings of the 4th IEEE International Conference on Development and Learning, 96101. doi: 10.1109/DEVLRN.2005.1490951.Google Scholar
Chartrand, T., & Bargh, J. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76(6), 893910.CrossRefGoogle ScholarPubMed
Chong, T. T.-J., Cunnington, R., Williams, M. A., Kanwisher, N., & Mattingley, J. B. (2008). fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Current Biology, 18(20), 15761580. doi: 10.1016/j.cub.2008.08.068.CrossRefGoogle ScholarPubMed
Cook, J., & Bird, G. (2011). Social attitudes differentially modulate imitation in adolescents and adults. Experimental Brain Research: Special Issue on Joint Action, 211(3–4), 601612. doi: 10.1007/s00221-011-2584-4.CrossRefGoogle ScholarPubMed
Cook, J., (2012). Atypical social modulation of imitation in autism spectrum conditions. Journal of Autism and Developmental Disorders, 42(6), 10451051. doi: 10.1007/s10803-011-1341-7.CrossRefGoogle ScholarPubMed
Cook, J., Blakemore, S., & Press, C. (2013). Atypical basic movement kinematics in autism spectrum conditions. Brain, 136(Pt 9), 28162824. doi: 10.1093/brain/awt208.CrossRefGoogle ScholarPubMed
Cook, J., Saygin, A., Swain, R., & Blakemore, S. (2009). Reduced sensitivity to minimum-jerk biological motion in autism spectrum conditions. Neuropsychologia, 47(14), 32753278. doi: 10.1016/j.neuropsychologia.2009.07.010.CrossRefGoogle ScholarPubMed
Cook, J., Swapp, D., Pan, X., Bianchi-Berthouze, N., & Blakemore, S. (2014). Atypical interference effect of action observation in autism spectrum conditions. Psychological Medicine, 44(4), 731740. doi:10.1017/S0033291713001335CrossRefGoogle ScholarPubMed
Courchesne, E. (1997). Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Current Opinion in Neurobiology, 7(2), 269278. doi: 10.1016/S0959-4388(97)80016-5.CrossRefGoogle ScholarPubMed
Courchesne, E., Yeung-Courchesne, R., Press, G., Hesselink, J., & Jernigan, T. (1988). Hypoplasia of cerebellar vermal lobules VI and VII in autism. New England Journal of Medicine, 318(21), 13491354. doi: 10.1056/NEJM198805263182102.CrossRefGoogle ScholarPubMed
Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., et al. (2006). Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9(1), 2830. doi: 10.1038/nn1611.CrossRefGoogle ScholarPubMed
Dayan, E., Casile, A., Levit-Binnun, N., Giese, M. A., Hendler, T., & Flash, T. (2007). Neural representations of kinematic laws of motion: Evidence for action–perception coupling. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 2058220587. doi: 10.1073/pnas.0710033104.CrossRefGoogle ScholarPubMed
DiCicco-Bloom, E., Lord, C., Zwaigenbaum, L., Courchesne, E., Dager, S., et al. (2006). The developmental neurobiology of autism spectrum disorder. Journal of Neuroscience, 26(26), 68976906. doi: 10.1523/JNEUROSCI.1712-06.2006.CrossRefGoogle ScholarPubMed
Dinstein, I., Thomas, C., Humphreys, K., Minshew, N., Behrmann, M., & Heeger, D. (2010). Normal movement selectivity in autism. Neuron, 66(3), 461469. doi: 10.1016/j.neuron.2010.03.034.CrossRefGoogle ScholarPubMed
Fabbri-Destro, M., Cattaneo, L., Boria, S., & Rizzolatti, G. (2009). Planning actions in autism. Experimental Brain Research, 192(3), 521525. doi: 10.1007/s00221-008-1578-3.CrossRefGoogle ScholarPubMed
Flash, T., & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model. Journal of Neuroscience, 5(7), 16881703.CrossRefGoogle ScholarPubMed
Freitag, C. M., Konrad, C., Häberlen, M., Kleser, C., von Gontard, A., et al. (2008). Perception of biological motion in autism spectrum disorders. Neuropsychologia, 46(5), 14801494. doi:10.1016/j.neuropsychologia.2007.12.025CrossRefGoogle ScholarPubMed
Gillmeister, H., Catmur, C., Liepelt, R., Brass, M., & Heyes, C. (2008). Experience-based priming of body parts: A study of action imitation. Brain Research, 1217, 157170. doi: 10.1016/j.brainres.2007.12.076.CrossRefGoogle ScholarPubMed
Gowen, E., & Hamilton, A. (2013). Motor abilities in autism: A review using a computational context. Journal of Autism and Developmental Disorders, 43(2), 323344. doi: 10.1007/s10803-012-1574-0.CrossRefGoogle ScholarPubMed
Gowen, E., & Miall, R. (2007). The cerebellum and motor dysfunction in neuropsychiatric disorders. The Cerebellum, 6(3), 268279. doi: 10.1080/14734220601184821.CrossRefGoogle ScholarPubMed
Gowen, E., Stanley, J., & Miall, R. (2008). Movement interference in autism-spectrum disorder. Neuropsychologia, 46(4), 10601068. doi: 10.1016/j.neuropsychologia.2007.11.004.CrossRefGoogle ScholarPubMed
Hamilton, A. (2008). Emulation and mimicry for social interaction: A theoretical approach to imitation in autism. Quarterly Journal of Experimental Psychology, 61(1), 101115. doi: 10.1080/17470210701508798.CrossRefGoogle ScholarPubMed
Hamilton, A., Brindley, R., & Frith, U. (2007). Imitation and action understanding in autistic spectrum disorders: How valid is the hypothesis of a deficit in the mirror neuron system? Neuropsychologia, 45(8), 18591868. doi: 10.1016/j.neuropsychologia.2006.11.022.CrossRefGoogle ScholarPubMed
Heiser, M., Iacoboni, M., Maeda, F., Marcus, J., & Mazziotta, J. C. (2003). The essential role of Broca’s area in imitation. European Journal of Neuroscience, 17(5), 11231128.CrossRefGoogle ScholarPubMed
Herrington, J. D., Baron-Cohen, S., Wheelwright, S. J., Singh, K. D., Bullmore, E. T., et al. (2007). The role of MT+/V5 during biological motion perception in Asperger syndrome: An fMRI study. Research in Autism Spectrum Disorders, 1(1), 1427. doi: 10.1016/j.rasd.2006.07.002.CrossRefGoogle Scholar
Heyes, C. (2010). Where do mirror neurons come from? Neuroscience and Biobehavioral Reviews, 34(4), 575583. doi: 10.1016/j.neubiorev.2009.11.007.CrossRefGoogle ScholarPubMed
Heyes, C. (2011). Automatic imitation. Psychological Bulletin, 137(3), 463483. doi: 10.1037/a0022288.CrossRefGoogle ScholarPubMed
Iacoboni, M., Woods, R., Brass, M., Bekkering, H., Mazziotta, J., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 25262528. doi: 10.1126/science.286.5449.2526.CrossRefGoogle ScholarPubMed
Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14, 201211.CrossRefGoogle Scholar
Kaiser, M., Delmolino, L., Tanaka, J., & Shiffrar, M. (2010a). Comparison of visual sensitivity to human and object motion in autism spectrum disorder. Autism Research, 3(4), 191195. doi: 10.1002/aur.137.CrossRefGoogle ScholarPubMed
Kaiser, M., Hudac, C., Shultz, S., Lee, S., Cheung, C., et al. (2010b). Neural signatures of autism. Proceedings of the National Academy of Sciences of the United States of America, 107(49), 2122321228. doi: 10.1073/pnas.1010412107.CrossRefGoogle ScholarPubMed
Kilner, J., Hamilton, A., & Blakemore, S. (2007). Interference effect of observed human movement on action is due to velocity profile of biological motion. Social Neuroscience, 2(34), 158166. doi: 10.1080/17470910701428190.CrossRefGoogle ScholarPubMed
Kilner, J., Neal, A., Weiskopf, N., Friston, K., & Frith, C. (2009). Evidence of mirror neurons in human inferior frontal gyrus. Journal of Neuroscience, 29(32), 1015310159. doi: 10.1523/JNEUROSCI.2668-09.2009.CrossRefGoogle ScholarPubMed
Kilner, J., Paulignan, Y., & Blakemore, S. (2003). An interference effect of observed biological movement on action. Current Biology, 13(6), 522525.CrossRefGoogle ScholarPubMed
Klin, A., & Jones, W. (2008). Altered face scanning and impaired recognition of biological motion in a 15-month-old infant with autism. Developmental Science, 11(1), 4046. doi: 10.1111/j.1467-7687.2007.00608.x.CrossRefGoogle Scholar
Klin, A., Lin, D., Gorrindo, P., Ramsay, G., & Jones, W. (2009). Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature, 459(7244), 257261. doi: 10.1038/nature07868.CrossRefGoogle ScholarPubMed
Koldewyn, K., Whitney, D., & Rivera, S. M. (2010). The psychophysics of visual motion and global form processing in autism. Brain, 133(Pt 2), 599610. doi: 10.1093/brain/awp272.CrossRefGoogle ScholarPubMed
Lacquaniti, F., Terzuolo, C., & Viviani, P. (1983). The law relating the kinematic and figural aspects of drawing movements. Acta Psychologica, 54(13), 115130.CrossRefGoogle ScholarPubMed
Lakin, J., & Chartrand, T. (2003). Using nonconscious behavioral mimicry to create affiliation and rapport. Psychological Science, 14(4), 334339.CrossRefGoogle ScholarPubMed
Leighton, J., Bird, G., Charman, T., & Heyes, C. (2008). Weak imitative performance is not due to a functional ‘mirroring’ deficit in adults with autism spectrum disorders. Neuropsychologia, 46(4), 10411049. doi: 10.1016/j.neuropsychologia.2007.11.013.CrossRefGoogle Scholar
Leighton, J., & Heyes, C. (2010). Hand to mouth: Automatic imitation across effector systems. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 11741183. doi: 10.1037/a0019953.Google Scholar
Leighton, J., Bird, G., Orsini, C., & Heyes, C. (2010). Social attitudes modulate automatic imitation. Journal of Experimental Social Psychology, 46(6), 905910. doi: 10.1016/j.jesp.2010.07.001.CrossRefGoogle Scholar
Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., et al. (1989). Autism diagnostic observation schedule: A standardized observation of communicative and social behavior. Journal of Autism and Developmental Disorders, 19(2), 185212.CrossRefGoogle ScholarPubMed
Maurer, R. G., & Damasio, A. R. (1982). Childhood autism from the point of view of behavioral neurology. Journal of Autism and Developmental Disorders, 12(2), 195205.CrossRefGoogle ScholarPubMed
McIntosh, D., Reichmann-Decker, A., Winkielman, P., & Wilbarger, J. (2006). When the social mirror breaks: Deficits in automatic, but not voluntary, mimicry of emotional facial expressions in autism. Developmental Science, 9(3), 295302. doi: 10.1111/j.1467-7687.2006.00492.x.CrossRefGoogle Scholar
Milne, E., Swettenham, J., Hansen, P., Campbell, R., Jeffries, H., & Plaisted, K. (2002). High motion coherence thresholds in children with autism. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 43(2), 255263.CrossRefGoogle ScholarPubMed
Mostofsky, S. H., Dubey, P., Jerath, V. K., Jansiewicz, E. M., Goldberg, M. C., & Denckla, M. B. (2006). Developmental dyspraxia is not limited to imitation in children with autism spectrum disorders. Journal of the International Neuropsychological Society, 12(3), 314326.CrossRefGoogle Scholar
Mostofsky, S. H., Powell, S. K., Simmonds, D. J., Goldberg, M. C., Caffo, B., & Pekar, J. J. (2009). Decreased connectivity and cerebellar activity in autism during motor task performance. Brain, 132(Pt 9), 24132425. doi: 10.1093/brain/awp088.CrossRefGoogle ScholarPubMed
Murphy, P., Brady, N., Fitzgerald, M., & Troje, N. (2009). No evidence for impaired perception of biological motion in adults with autistic spectrum disorders. Neuropsychologia, 47(14), 32253235. doi: 10.1016/j.neuropsychologia.2009.07.026.CrossRefGoogle ScholarPubMed
Newsome, W. T., & Paré, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience, 8(6), 22012211.CrossRefGoogle ScholarPubMed
Oberman, L., Hubbard, E., McCleery, J., Altschuler, E., Ramachandran, V., & Pineda, J. (2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cognitive Brain Research, 24(2), 190198. doi: 10.1016/j.cogbrainres.2005.01.014.CrossRefGoogle ScholarPubMed
Oztop, E., Franklin, D., Chaminade, T., & Cheng, G. (2005). Human–humanoid interaction: Is a humanoid robot perceived as a human? International Journal of Humanoid Robotics, 2(4), 537559.CrossRefGoogle Scholar
Palmen, S. J. M. C., Engeland, H. van, Hof, P. R., & Schmitz, C. (2004). Neuropathological findings in autism. Brain, 127(12), 25722583. doi: 10.1093/brain/awh287.CrossRefGoogle ScholarPubMed
Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176180.CrossRefGoogle ScholarPubMed
Pellicano, E., Gibson, L., Maybery, M., Durkin, K., & Badcock, D. R. (2005). Abnormal global processing along the dorsal visual pathway in autism: A possible mechanism for weak visuospatial coherence? Neuropsychologia, 43(7), 10441053. doi: 10.1016/j.neuropsychologia.2004.10.003.CrossRefGoogle ScholarPubMed
Pelphrey, K., Mitchell, T., McKeown, M., Goldstein, J., Allison, T., & McCarthy, G. (2003). Brain activity evoked by the perception of human walking: Controlling for meaningful coherent motion. Journal of Neuroscience, 23(17), 68196825.CrossRefGoogle ScholarPubMed
Press, C. (2011). Action observation and robotic agents: Learning and anthropomorphism. Neuroscience and Biobehavioral Reviews, 35(6), 14101418. doi: 10.1016/j.neubiorev.2011.03.004.CrossRefGoogle ScholarPubMed
Press, C., Bird, G., Flach, R., & Heyes, C. (2005). Robotic movement elicits automatic imitation. Brain Research. Cognitive Brain Research, 25(3), 632640. doi: 10.1016/j.cogbrainres.2005.08.020.CrossRefGoogle ScholarPubMed
Press, C., Cook, J., Blakemore, S., & Kilner, J. (2011). Dynamic modulation of human motor activity when observing actions. Journal of Neuroscience, 31(8), 27922800. doi: 10.1523/JNEUROSCI.1595-10.2011.CrossRefGoogle ScholarPubMed
Press, C., Richardson, D., & Bird, G. (2010). Intact imitation of emotional facial actions in autism spectrum conditions. Neuropsychologia, 48(11), 32913297. doi: 10.1016/j.neuropsychologia.2010.07.012.CrossRefGoogle ScholarPubMed
Ramachandran, V., & Oberman, L. (2006). Broken mirrors: A theory of autism. Scientific American, 295(5), 6269.CrossRefGoogle ScholarPubMed
Rogers, S., Hepburn, S., Stackhouse, T., & Wehner, E. (2003). Imitation performance in toddlers with autism and those with other developmental disorders. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 44(5), 763781.CrossRefGoogle ScholarPubMed
Rogers, S., & Pennington, B. (1991). A theoretical approach to the deficits in infantile autism. Development and Psychopathology, 3(02), 137162. doi: 10.1017/S0954579400000043.CrossRefGoogle Scholar
Rogers, T. D., McKimm, E., Dickson, P. E., Goldowitz, D., Blaha, C. D., & Mittleman, G. (2013). Is autism a disease of the cerebellum? An integration of clinical and pre-clinical research. Frontiers in Systems Neuroscience, 7, 15. doi: 10.3389/fnsys.2013.00015.CrossRefGoogle ScholarPubMed
Russell, J. (1997). Autism as an executive disorder. New York: Oxford University Press.Google Scholar
Rutter, M. (1974). The development of infantile autism. Psychological Medicine, 4, 147163.CrossRefGoogle ScholarPubMed
Saygin, A., Cook, J., & Blakemore, S. (2010). Unaffected perceptual thresholds for biological and non-biological form-from-motion perception in autism spectrum conditions. PloS One, 5(10), e13491. doi: 10.1371/journal.pone.0013491.CrossRefGoogle ScholarPubMed
Southgate, V., & Hamilton, A. F. de C. (2008). Unbroken mirrors: Challenging a theory of autism. Trends in Cognitive Sciences, 12(6), 225229. doi: 10.1016/j.tics.2008.03.005.CrossRefGoogle ScholarPubMed
Spencer, J., O’Brien, J., Riggs, K., Braddick, O., Atkinson, J., & Wattam-Bell, J. (2000). Motion processing in autism: Evidence for a dorsal stream deficiency. NeuroReport, 11(12), 27652767.CrossRefGoogle ScholarPubMed
Spengler, S., Bird, G., & Brass, M. (2010). Hyperimitation of actions is related to reduced understanding of others’ minds in autism spectrum conditions. Biological Psychiatry, 68(12), 11481155. doi: 10.1016/j.biopsych.2010.09.017.CrossRefGoogle ScholarPubMed
Stanley, J., Gowen, E., & Miall, C. (2007). Effects of agency on movement interference during observation of a moving dot stimulus. Journal of Experimental Psychology: Human Perception and Performance, 33(4), 915926. doi: 10.1037/0096-1523.33.4.915.Google Scholar
Staples, K. L., & Reid, G. (2010). Fundamental movement skills and autism spectrum disorders. Journal of Autism and Developmental Disorders, 40(2), 209217. doi: 10.1007/s10803-009-0854-9.CrossRefGoogle ScholarPubMed
Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7(9), 907915. doi: 10.1038/nn1309.CrossRefGoogle ScholarPubMed
Tomasello, M. (1996). Do apes ape? In Heyes, C. M. & Galef, B. G. (Eds.), Social learning in animals: The roots of culture. New York: Academic Press, 319346.CrossRefGoogle Scholar
Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W., & Pardo, C. A. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of Neurology, 57(1), 6781. doi: 10.1002/ana.20315.CrossRefGoogle ScholarPubMed
Webb, S. J., Sparks, B.-F., Friedman, S. D., Shaw, D. W. W., Giedd, J., et al. (2009). Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder. Psychiatry Research, 172(1), 6167. doi: 10.1016/j.pscychresns.2008.06.001.CrossRefGoogle ScholarPubMed
Williams, J., Whiten, A., & Singh, T. (2004). A systematic review of action imitation in autistic spectrum disorder. Journal of Autism and Developmental Disorders, 34(3), 285299.CrossRefGoogle ScholarPubMed
Williams, J., Whiten, A., Suddendorf, T., & Perrett, D. I. (2001). Imitation, mirror neurons and autism. Neuroscience and Biobehavioral Reviews, 25(4), 287295.CrossRefGoogle ScholarPubMed

References

Allen, J., Weinrich, M., Hoppitt, W., & Rendell, L. (2013). Network-based diffusion analysis reveals cultural transmission of lobtail feeding in humpback whales. Science, 340, 485488.CrossRefGoogle ScholarPubMed
Atton, N., Hoppitt, W., Webster, M. M., Galef, B. G., & Laland, K. N. (2012). Information flow through threespine stickleback networks without social transmission. Proceedings of the Royal Society B: Biological Sciences, 279, 42724278.CrossRefGoogle ScholarPubMed
Baaren, R. van, Janssen, L., Chartrand, T. L., & Dijksterhuis, A. (2009). Where is love? The social aspects of mimicry. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 23812389. doi: 10.1098/rstb.2009.0057.CrossRefGoogle ScholarPubMed
Bandura, A. (1977). Social learning theory. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Bartlett, F. C. (1932) Remembering. Oxford: Macmillan.Google Scholar
Bergen, Y. van, Coolen, I., & Laland, K. (2004). Nine-spined sticklebacks exploit the most reliable source when public and private information conflict. Proceedings of the Royal Society B: Biological Sciences, 271, 957962.CrossRefGoogle ScholarPubMed
Boyd, R., & Richerson, P. J. (1985). Culture and the evolutionary process. Chicago, IL: University of Chicago Press.Google Scholar
Boyd, R., Richerson, P. J., & Henrich, J. (2011). The cultural niche: Why social learning is essential for human adaptation. Proceedings of the National Academy of Sciences, 108, 1091810925. doi: 10.1073/pnas.1100290108.CrossRefGoogle ScholarPubMed
Caldwell, C. A., & Millen, A. (2008). Experimental models for testing hypotheses about cumulative cultural evolution. Evolution and Human Behaviour, 29, 165171.CrossRefGoogle Scholar
Caldwell, C. A., (2009). Social learning mechanisms and cumulative cultural evolution: Is imitation necessary? Psychological Science, 20(12), 14781483.CrossRefGoogle ScholarPubMed
Cantor, M., & Whitehead, H. (2013). The interplay between social networks and culture: Theoretically and among whales and dolphins. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 14712970.CrossRefGoogle ScholarPubMed
Cavalli-Sforza, L. L., & Feldman, M. (1981). Cultural transmission and evolution: A quantitative approach. Princeton, NJ: Princeton University Press.Google ScholarPubMed
Centola, D., González-Avella, J. C., Eguíluz, V. M., & San Miguel, M. (2007). Homophily, cultural drift, and the co-evolution of cultural groups. Journal of Conflict Resolution, 51, 905929. doi: 10.1177/0022002707307632.CrossRefGoogle Scholar
Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76, 893910.CrossRefGoogle ScholarPubMed
Chudek, M., Heller, S., Birch, S. & Henrich, J. (2012). Prestige-based cultural learning: Bystander’s differential attention to potential models influences children’s learning. Evolution and Human Behaviour, 33, 4656.CrossRefGoogle Scholar
Claidiere, N., Messer, E., Hoppitt, W., & Whiten, A. (2013). Diffusion dynamics of socially learning foraging techniques in squirrel monkeys. Current Biology, 23, 12511255.CrossRefGoogle ScholarPubMed
Dean, L. G., Kendal, R. L., Schapiro, S. J., Thierry, B., & Laland, K. N. (2012). Identification of the social and cognitive processes underlying human cumulative culture. Science, 335(6072), 11141118.CrossRefGoogle ScholarPubMed
Dean, L., Vale, G. L., Laland, K. N., Flynn, E. G., & Kendal, R. L. (2014). Human cumulative culture: A comparative perspective. Biological Reviews, 89, 284301.CrossRefGoogle ScholarPubMed
Deutsch, M., & Gerard, H. B. (1955). A study of normative and informational social influences upon individual judgment. Journal of Abnormal and Social Psychology, 51, 629636.CrossRefGoogle Scholar
DeWalt, K. M., DeWalt, B. R. & Wayland, C. B. (1998). Participant observation. In Bernard, H. R. (Ed.), Handbook of methods in cultural anthropology. Walnut Creek, CA: AltaMira Press, 259299.Google Scholar
Flynn, E. (2008). Investigating children as cultural magnets: Do young children transmit redundant information along diffusion chains? Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1509), 35413551.CrossRefGoogle Scholar
Flynn, E., Laland, K. N., Kendal, R. L., & Kendal, J. R. (2013). Developmental niche construction. Developmental Science, 16(2), 296313.CrossRefGoogle ScholarPubMed
Flynn, E., & Siegler, R. (2007). Measuring change: Current trends and future directions in microgenetic research. Infant and Child Development, 16, 135149.CrossRefGoogle Scholar
Flynn, E., & Smith, K. (2012). Investigating the mechanisms of cultural acquisition: How pervasive is overimitation in adults? Social Psychology, 43, 185195.CrossRefGoogle Scholar
Flynn, E., & Whiten, A. (2010). Studying children’s social learning experimentally ‘in the wild’. Learning & Behavior, 38, 284296.CrossRefGoogle ScholarPubMed
Flynn, E., & Whiten, A. (2012). Experimental ‘microcultures’ in young children: Identifying biographic, cognitive, and social predictors of information transmission. Child Development, 83(3), 911925.CrossRefGoogle ScholarPubMed
Flynn, E., & Whiten, A. (2013). Dissecting children’s observational learning of complex actions through selective video displays. Journal of Experimental Child Psychology, 116, 247263.CrossRefGoogle ScholarPubMed
Forsyth, D. R. (2006). Group dynamics. Belmont, CA: Thomson-Wadworth.Google Scholar
Fu, F., Nowak, M., Christakis, N., & Fowler, J. (2012). The evolution of homophily. Scientific Reports, 2, 845.CrossRefGoogle ScholarPubMed
Giraldeau, L.-A., Valone, T., & Templeton, J. (2002). Potential disadvantages of using socially acquired information. Philosophical Transactions of the Royal Society B: Biological Sciences, 357, 15591566.CrossRefGoogle ScholarPubMed
Griskevicius, V., Goldstein, N., Mortensen, C., Cialdini, R. B., & Kenrick, D. T. (2006). Going along versus going alone: When fundamental motives facilitate strategic (non)conformity. Journal of Personality and Social Psychology, 91, 281294.CrossRefGoogle ScholarPubMed
Heath, C., Bell, C., & Sternberg, E. (2001). Emotional selection in memes: The case of urban legends. Journal of Personality and Social Psychology, 81, 10281041.CrossRefGoogle Scholar
Henrich, J., & Gil-White, F. J. (2001). The evolution of prestige: Freely conferred deference as a mechanism for enhancing the benefits of cultural transmission. Evolution and Human Behaviour, 22, 165196.CrossRefGoogle ScholarPubMed
Henrich, J., & Henrich, N. (2010). The evolution of cultural adaptations: Fijian food taboos protect against dangerous marine toxins. Proceedings of the Royal Society B: Biological Sciences, 277, 37153724.CrossRefGoogle ScholarPubMed
Henrich, J., & McElreath, R. (2003). The evolution of cultural evolution. Evolutionary Anthropology, 12, 123135.CrossRefGoogle Scholar
Henrich, J., Heine, S., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33, 61135.CrossRefGoogle ScholarPubMed
Herrmann, E., Call, J., Hernàndez-Lloreda, M. V., Hare, B., & Tomasello, M. (2007). Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science, 317, 13601366. doi: 10.1126/science.1146282.CrossRefGoogle ScholarPubMed
Hill, K., Barton, M., & Hurtado, A. M. (2009). The emergence of human uniqueness: Characters underlying behavioral modernity. Evolutionary Anthropology: Issues, News, and Reviews, 18, 187200. doi: 10.1002/evan.20224.CrossRefGoogle Scholar
Hoppitt, W., & Laland, K. (2011). Detecting social learning using networks: A user’s guide. American Journal of Primatology, 73, 834844.CrossRefGoogle Scholar
Hoppitt, W., (2013). Social learning: An introduction to mechanisms, methods, and models. Princeton, NJ: Princeton University Press.Google Scholar
Horner, V., Whiten, A., Flynn, E., & de Waal, F. (2006). Faithful replication of foraging techniques along cultural transmission chains by chimpanzees and children. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 1387813883.CrossRefGoogle ScholarPubMed
Jacobs, R. C., & Campbell, D. T. (1961). The perpetuation of an arbitrary tradition through several generations of a laboratory microculture. Journal of Abnormal and Social Psychology, 62, 649658.CrossRefGoogle ScholarPubMed
Jones, J. T., Pelham, B. W., Carvallo, M., & Mirenberg, M. C. (2004). How do I love thee? Let me count the Js: Implicit egotism and interpersonal attraction. Journal of Personality and Social Psychology, 87, 665683.CrossRefGoogle Scholar
Kawai, M. (1965). Newly-acquired pre-cultural behavior of the natural troop of Japanese monkeys on Koshima islet. Primates, 6, 130.CrossRefGoogle Scholar
Kunst, L., & Kratzer, J. (2007). Diffusion of innovations through social networks of children. Young Consumers, 8(1), 3651.CrossRefGoogle Scholar
Kutsukake, N., Suetsugu, N., & Hasegawa, T. (2006). Pattern, distribution, and function of greeting behavior among black-and-white colobus. International Journal of Primatology, 27, 12711291.CrossRefGoogle Scholar
Lakin, J. L., & Chartrand, T. L. (2003). Using nonconscious behavioural mimicry to create affiliation and rapport. Psychological Science, 14, 334339.CrossRefGoogle ScholarPubMed
Laland, K. (2004). Social learning strategies. Learning & Behavior, 32, 414.CrossRefGoogle ScholarPubMed
Lewis, H., & Laland, K. (2012). Transmission fidelity is the key to the build-up of cumulative culture. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 21712180.CrossRefGoogle Scholar
Madden, J. R., Drewe, J. A., Pearce, G. P., & Clutton-Brock, T. H. (2011). The social network structure of a wild meerkat population: 3. Position of individuals within networks. Behavioral Ecology and Sociobiology, 65(10), 18571871.CrossRefGoogle Scholar
Mann, J., Stanton, M., Patterson, E., Bienenstock, E., & Singh, L. (2012). Social networks reveal cultural behaviour in tool-using dolphins. Nature Communications, 3, 980.CrossRefGoogle ScholarPubMed
McElreath, R., & Henrich, J. (2007). Dual inheritance theory: The evolution of human cultural capacities and cultural evolution. In Dunbar, R. & Barrett, L. (Eds.), Oxford handbook of evolutionary psychology, Oxford: Oxford University Press.Google Scholar
McPherson, M., Smith-Lovin, L., & Cook, J. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415444.CrossRefGoogle Scholar
Mesoudi, A. (2008). An experimental simulation of the ‘copy successful individuals’ cultural learning strategy: Adaptive landscapes, producer–scrounger dynamics, and informational access costs. Evolution and Human Behavior, 29, 350363.CrossRefGoogle Scholar
Mesoudi, A., & Whiten, A. (2008). The multiple roles of cultural transmission experiments in understanding human cultural evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 34893501.CrossRefGoogle ScholarPubMed
Mesoudi, A., Whiten, A., & Dunbar, R. I. M. (2006). A bias for social information in human cultural transmission. British Journal of Psychology, 97, 405423.CrossRefGoogle ScholarPubMed
Nielsen, M. (2012). Imitation, pretend play and childhood: Essential elements in the evolution of human culture? Journal of Comparative Psychology, 126, 170181.CrossRefGoogle ScholarPubMed
Nielsen, M., & Blank, C. (2011). Imitation in young children: When who gets copied is more important than what gets copied. Developmental Psychology, 47, 10501053.CrossRefGoogle ScholarPubMed
Over, H., & Carpenter, M. (2012). Putting the social into social learning: Explaining both selectivity and fidelity in children’s copying behavior. Journal of Comparative Psychology, 126, 182192.CrossRefGoogle ScholarPubMed
Over, H., Carpenter, M., Spears, R., & Gattis, M. (2013). Children selectively trust individuals who have imitated them. Social Development, 22, 215425.CrossRefGoogle Scholar
Pike, T. W., & Laland, K. N. (2010) Conformist learning in nine-spined sticklebacks’ foraging decisions. Biological Letters, 6, 466468.CrossRefGoogle ScholarPubMed
Powell, A., Shennan, S., & Thomas, M. (2009). Late Pleistocene demography and the appearance of modern human behavior. Science, 324(5932), 1298.CrossRefGoogle ScholarPubMed
Rendell, L., Fogarty, L., Hoppitt, W., Morgan, T., Webster, M., & Laland, K. (2011). Cognitive culture: Theoretical and empirical insights into social learning strategies. Trends in Cognitive Sciences, 15, 6876.CrossRefGoogle ScholarPubMed
Richerson, P. J., & Boyd, R. (2005). Not by genes alone: How culture transformed human evolution. Chicago, IL: University of Chicago Press.Google Scholar
Rogers, A. (1988). Does biology constrain culture? American Anthropologist, 90, 819831.CrossRefGoogle Scholar
Schaik, C. P. van, & Burkart, J. M. (2011). Social learning and evolution: The cultural intelligence hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 10081016. doi: 10.1098/rstb.2010.0304.CrossRefGoogle ScholarPubMed
Sherif, M. (1935). A study of some social factors in perception. Archives of Psychology, 27(187).Google Scholar
Sterelny, K. (2003). Thought in a hostile world: The evolution of human cognition. Hoboken, NJ: Wiley-Blackwell.Google Scholar
Sterelny, K. (2011). From hominins to humans: How sapiens became behaviourally modern. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 809822.CrossRefGoogle ScholarPubMed
Stubbersfield, J., Tehrani, J., & Flynn, E. (2014). Santa crucified, Walt Disney and death by lollypop: Do urban legends exhibit cognitive biases on cultural transmission? British Journal of Psychology, 106(2), 288–307.Google Scholar
Sundaresan, S. R., Fischhoff, I. R., Dushoff, J., & Rubenstein, D. I. (2007). Network metrics reveal differences in social organization between two fission-fusion species, Grevys zebra and onager. Oecologia, 151, 140149.CrossRefGoogle Scholar
Tajfel, H., & Turner, J. C. (1986). The social identity theory of intergroup behavior. In Worchel, S. & Austin, W. G. (Eds.), Psychology of intergroup relations. Chicago, IL: Nelson-Hall, 724.Google Scholar
Toelch, U., Bruce, M. J., Meeus, M. T. H., & Reader, S. M. (2010). Humans copy rapidly increasing choices in a multiarmed bandit problem. Evolution and Human Behavior, 31(5), 326333.CrossRefGoogle Scholar
Tomasello, M. (1999). The cultural origins of human cognition. Cambridge, MA: Harvard University Press.Google Scholar
Tomasello, M., Kruger, A., & Ratner, H. (1993). Cultural learning. Behavioural and Brain Sciences, 16, 495552.CrossRefGoogle Scholar
Užgiris, I. C. (1981). Two functions of imitation during infancy. International Journal of Behavioral Development, 4, 112.CrossRefGoogle Scholar
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.Google Scholar
Webster, M., & Laland, K. (2011). Reproductive state affects reliance on public information in sticklebacks. Proceedings of the Royal Society B: Biological Sciences, 278, 619627.CrossRefGoogle ScholarPubMed
Whiten, A. (2011). The scope of culture in chimpanzees, humans and ancestral apes. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 9971007.CrossRefGoogle ScholarPubMed
Whiten, A., & Flynn, E. (2010). The transmission and evolution of experimental microcultures in groups of young children. Developmental Psychology, 46, 16941709.CrossRefGoogle ScholarPubMed
Whiten, A., & Mesoudi, A. (2008). Establishing an experimental science of culture: Animal social diffusion experiments. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 34773488.CrossRefGoogle ScholarPubMed
Wisdom, T. N., Song, X., & Goldstone, R. L. (2013). Social learning strategies in a networked group. Cognitive Science, 37, 13831425.CrossRefGoogle Scholar
Wood, L., Kendal, R., & Flynn, E. (2012). Context-dependent model-based biases in cultural transmission: Children’s imitation is affected by model age over model knowledgeable state. Evolution and Human Behavior, 33(4), 387394.CrossRefGoogle Scholar
Wood, L.A., Kendal, R., & Flynn, E. (2013). Whom do children copy? Model-based biases in learning. Developmental Review, 33, 341356.CrossRefGoogle Scholar
Zentall, T. (2006). Imitation: Definitions, evidence, and mechanisms. Animal Cognition, 9, 335353.CrossRefGoogle ScholarPubMed
Zentall, T. (2012). Perspectives on observational learning in animals. Journal of Comparative Psychology, 126, 114128.CrossRefGoogle ScholarPubMed

References

Alaerts, K., Senot, P., Swinnen, S. P., Craighero, L., Wenderoth, N., & Fadiga, L. (2010). Force requirements of observed object lifting are encoded by the observer’s motor system: A TMS study. European Journal of Neuroscience, 31(6), 11441153.CrossRefGoogle ScholarPubMed
Albert, N. B., Robertson, E. M., & Miall, R. C. (2009). The resting human brain and motor learning. Current Biology, 19(12), 10231027.CrossRefGoogle ScholarPubMed
Bernardi, N. F., Darainy, M., Bricolo, E., & Ostry, D. J. (2013). Observing motor learning produces somatosensory change. Journal of Neurophysiology, 110(8), 18041810.CrossRefGoogle ScholarPubMed
Blakemore, S. J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2(8), 561567.CrossRefGoogle Scholar
Blandin, Y., & Proteau, L. (2000). On the cognitive basis of observational learning: Development of mechanisms for the detection and correction of errors. Quarterly Journal of Experimental Psychology A, 53(3), 846867.CrossRefGoogle ScholarPubMed
Brown, L. E., Wilson, E. T., & Gribble, P. L. (2009). Repetitive transcranial magnetic stimulation to the primary motor cortex interferes with motor learning by observing. Journal of Cognitive Neuroscience, 21(5), 10131022.CrossRefGoogle Scholar
Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., et al. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. European Journal of Neuroscience, 13, 400404.CrossRefGoogle Scholar
Buckingham, G., Wong, J. D., Tang, M., Gribble, P. L., & Goodale, M. A. (2014). Observing object lifting errors modulates cortico-spinal excitability and improves object lifting performance. Cortex, 50, 115124.CrossRefGoogle ScholarPubMed
Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50(3), 11481167.CrossRefGoogle ScholarPubMed
Ellis, R. R., & Lederman, S. J. (1999). The material-weight illusion revisited. Perception & Psychophysics, 61(8), 15641576.CrossRefGoogle ScholarPubMed
Flanagan, J. R., & Johansson, R. S. (2003). Action plans used in action observation. Nature, 424(6950), 769771.CrossRefGoogle ScholarPubMed
Flanagan, J. R., Vetter, P., Johansson, R. S., & Wolpert, D. M. (2003). Prediction precedes control in motor learning. Current Biology, 13(2), 146150.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119 (Pt 2), 593609.CrossRefGoogle ScholarPubMed
Gallese, V., Fogassi, L., Fadiga, L., & Rizzolatti, G. (2002). Action representation and the inferior parietal lobule. Attention and Performance, 19, 247266.Google Scholar
Gallese, V., Keysers, C., & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends in Cognitive Science, 8, 396403.CrossRefGoogle ScholarPubMed
Gandolfo, F., Mussa-Ivaldi, F. A., & Bizzi, E. (1996). Motor learning by field approximation. Proceedings of the National Academy of Sciences of the United States of America, 93(9), 38433846.CrossRefGoogle ScholarPubMed
Garrison, K. A., Winstein, C. J., & Aziz-Zadeh, L. (2010). The mirror neuron system: A neural substrate for methods in stroke rehabilitation. Neurorehabilitation and Neural Repair, 24(5), 404412.CrossRefGoogle ScholarPubMed
Gordon, A. M., Forssberg, H., Johansson, R. S., & Westling, G. (1991). Visual size cues in the programming of manipulative forces during precision grip. Experimental Brain Research, 83(3), 477482.CrossRefGoogle ScholarPubMed
Grafton, S. T., Fadiga, L., Arbib, M. A., & Rizzolatti, G. (1997). Premotor cortex activation during observation and naming of familiar tools. NeuroImage, 6, 231236.CrossRefGoogle ScholarPubMed
Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 25262528.CrossRefGoogle ScholarPubMed
Imamura, K., Onoe, H., Watanabe, Y., Andersson, J., Hetta, J., et al. (1996). Regional activation of human cerebral cortex upon an adaptation in mirror drawing. Neuroscience Letters, 209(3), 185188.CrossRefGoogle ScholarPubMed
Johansson, R. S., & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56(3), 550564.CrossRefGoogle ScholarPubMed
Johansson, R. S., (1988). Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Experimental Brain Research, 71(1), 5971.CrossRefGoogle ScholarPubMed
Krakauer, J. W., Ghez, C., & Ghilardi, M. F. (2005). Adaptation to visuomotor transformations: Consolidation, interference, and forgetting. Journal of Neuroscience, 25(2), 473478.CrossRefGoogle ScholarPubMed
Lim, S. B., Larssen, B. C., & Hodges, N. J. (2013). Manipulating visual–motor experience to probe for observation-induced after-effects in adaptation learning. Experimental Brain Research, 232(3), 114.Google ScholarPubMed
Malfait, N., Valyear, K. F., Culham, J. C., Anton, J.-L., Brown, L. E., & Gribble, P. L. (2010). fMRI activation during observation of others’ reach errors. Journal of Cognitive Neuroscience, 22(7), 14931503.CrossRefGoogle ScholarPubMed
Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J., & Thach, W. T. (1996). Throwing while looking through prisms I. Focal olivocerebellar lesions impair adaptation. Brain, 119(4), 11831198.CrossRefGoogle ScholarPubMed
Mattar, A. A. G., & Gribble, P. L. (2005). Motor learning by observing. Neuron, 46(1), 153160.CrossRefGoogle ScholarPubMed
McGregor, H., Belbeck, B., Whyte, N., & Gribble, P.L. (unpublished). Does motor learning by observing depend on observer–tutor visual perspective?Google Scholar
McGregor, H., & Gribble, P. L. (unpublished). Neural basis of motor learning by observing.Google Scholar
Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Research, 42(2), 223227.CrossRefGoogle ScholarPubMed
Ong, N. T., & Hodges, N. J. (2010). Absence of after-effects for observers after watching a visuomotor adaptation. Experimental Brain Research, 205(3), 325334.CrossRefGoogle ScholarPubMed
Ong, N. T., Larssen, B. C., & Hodges, N. J. (2012). In the absence of physical practice, observation and imagery do not result in updating of internal models for aiming. Experimental Brain Research, 218(1), 919.CrossRefGoogle Scholar
Ostry, D. J., Darainy, M., Mattar, A. A., Wong, J., & Gribble, P. L. (2010). Somatosensory plasticity and motor learning. Journal of Neuroscience, 30(15), 53845393.CrossRefGoogle ScholarPubMed
Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176180.CrossRefGoogle ScholarPubMed
Reichelt, A. F., Ash, A. M., Baugh, L. A., Johansson, R. S., & Flanagan, J. R. (2013). Adaptation of lift forces in object manipulation through action observation. Experimental Brain Research, 228(2), 221234.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131141.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2(9), 661670.CrossRefGoogle ScholarPubMed
Rohbanfard, H., & Proteau, L. (2011). Learning through observation: A combination of expert and novice models favors learning. Experimental Brain Research, 215(34), 183197.CrossRefGoogle ScholarPubMed
Shadmehr, R., & Mussa-Ivaldi, F. A. (1994). Adaptive representation of dynamics during learning of a motor task. Journal of Neuroscience, 14(5), 32083224.CrossRefGoogle ScholarPubMed
Shadmehr, R., Smith, M. A., & Krakauer, J. W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33, 89108.CrossRefGoogle ScholarPubMed
Stefan, K., Cohen, L. G., Duque, J., Mazzocchio, R., Celnik, P., et al. (2005). Formation of a motor memory by action observation. Journal of Neuroscience, 25(41), 93399346.CrossRefGoogle ScholarPubMed
Strafella, A. P., & Paus, T. (2000). Modulation of cortical excitability during action observation: A transcranial magnetic stimulation study. NeuroReport, 11(10), 22892292.CrossRefGoogle ScholarPubMed
Wanda, P. A., Li, G., & Thoroughman, K. A. (2013). State dependence of adaptation of force output following movement observation. Journal of Neurophysiology, 110(5), 12461256.CrossRefGoogle ScholarPubMed
Watkins, K. E., Strafella, A. P., & Paus, T. (2003). Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia, 41(8), 989994.CrossRefGoogle ScholarPubMed
Williams, A., & Gribble, P. L. (2012). Observed effector-independent motor learning by observing. Journal of Neurophysiology, 107(6), 15641570.CrossRefGoogle ScholarPubMed
Zeki, S., Watson, J. D., Lueck, C. J., Friston, K. J., Kennard, C., & Frackowiak, R. S. (1991). A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience, 11(3), 641649.CrossRefGoogle ScholarPubMed

References

Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: Role of the STS region. Trends in Cognitive Sciences, 4(7), 267278.CrossRefGoogle ScholarPubMed
Arbib, M. A. (1981). Perceptual structures and distributed motor control. In Brooks, V. B. (Ed.), Handbook of physiology :The nervous system II. Motor control. Bethesda, MD: American Physiological Society, 14491480.Google Scholar
Arbib, M.A., & Rizzolatti, G. (1999). Neural expectations: A possible evolutionary path from manual skills to language. In Loocke, P. V. (Ed.), The nature of concepts. Evolution, structure and representation. New York: Routledge, 128154.Google Scholar
Aziz-Zadeh, L., Sheng, T., Liew, S. L., & Damasio, H. (2012). Understanding otherness: The neural bases of action comprehension and pain empathy in a congenital amputee. Cerebral Cortex, 22(4), 811819. doi: 10.1093/cercor/bhr139.CrossRefGoogle Scholar
Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex, 15(8), 12431249.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Grézes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16(19), 19051910.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Ehrenberg, S., Leung, D., & Haggard, P. (2010). Experts see it all: Configural effects in action observation. Psychological Research, 74(4), 400406. doi: 10.1007/s00426-009-0262-y.CrossRefGoogle ScholarPubMed
Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology, 16(1), 6974. doi: 10.1016/j.cub.2005.10.071.CrossRefGoogle ScholarPubMed
Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo: Observation of dance by dancers. NeuroImage, 31(3), 12571267.CrossRefGoogle ScholarPubMed
Cross, E. S., Kraemer, D. J., Hamilton, A. F., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19(2), 315326.CrossRefGoogle ScholarPubMed
Cross, E. S., Liepelt, R., de , C. Hamilton, A. F., Parkinson, J., Ramsey, R., et al. (2012). Robotic movement preferentially engages the action observation network. Human Brain Mapping, 33(9), 22382254. doi: 10.1002/hbm.21361.CrossRefGoogle ScholarPubMed
Cross, E. S., Stadler, W., Parkinson, J., Schütz-Bosbach, S., & Prinz, W. (2013). The influence of visual training on predicting complex action sequences. Human Brain Mapping, 34(2), 467486. doi: 10.1002/hbm.21450.CrossRefGoogle ScholarPubMed
Decety, J., Grezes, J., Costes, N., Perani, D., Jeannerod, M., et al. (1997). Brain activity during observation of actions: Influence of action content and subject’s strategy. Brain, 120(Pt 10), 17631777.CrossRefGoogle ScholarPubMed
Ericsson, K. A., Krampe, R. T., & Tesch-Romer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363406.CrossRefGoogle Scholar
Ferrari, P. F., Rozzi, S., & Fogassi, L. (2005). Mirror neurons responding to observation of actions made with tools in monkey ventral premotor cortex. Journal of Cognitive Neuroscience, 17(2), 212226. doi: 10.1162/0898929053124910.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119 (Pt 2), 593609.CrossRefGoogle ScholarPubMed
Gallese, V., Gernsbacher, M. A., Heyes, C., Hickock, G., & Iacoboni, M. (2011). Mirror neuron forum. Perspectives on Psychological Science, 6, 369407.CrossRefGoogle ScholarPubMed
Gallese, V., Rochat, M., Cossu, G., & Sinigaglia, C. (2009). Motor cognition and its role in the phylogeny and ontogeny of action understanding. Developmental Psychology, 45(1), 103113. doi: 2008-19282-002 [pii] 10.1037/a0014436.CrossRefGoogle ScholarPubMed
Garrison, K. A., Aziz-Zadeh, L., Wong, S. W., Liew, S. L., & Winstein, C. J. (2013). Modulating the motor system by action observation after stroke. Stroke, 44(8), 22472253. doi: 10.1161/STROKEAHA.113.001105.CrossRefGoogle ScholarPubMed
Gilaie-Dotan, S., Harel, A., Bentin, S., Kanai, R., & Rees, G. (2012). Neuroanatomical correlates of visual car expertise. NeuroImage, 62(1), 147153. doi: 10.1016/j.neuroimage.2012.05.017.CrossRefGoogle ScholarPubMed
Grafton, S. T., Arbib, M. A., Fadiga, L., & Rizzolatti, G. (1996). Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Experimental Brain Research, 112(1), 103111.CrossRefGoogle ScholarPubMed
Grézes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12(1), 119.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Grossman, E. D., Battelli, L., & Pascual-Leone, A. (2005). Repetitive TMS over posterior STS disrupts perception of biological motion. Vision Research, 45(22), 28472853.CrossRefGoogle ScholarPubMed
Hommel, B., Musseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24(5), 849878.CrossRefGoogle ScholarPubMed
James, W. (1890). Principles of psychology. New York: Holt.Google Scholar
Jeannerod, M. (1997). The cognitive neuroscience of action. Oxford: Wiley-Blackwell.Google Scholar
Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14, 201211.CrossRefGoogle Scholar
Kirsch, L. P., & Cross, E. S. (2015). Additive routes to action learning: Layering experience shapes engagement of the action observation network. Cerebral Cortex, 25, 47994811.CrossRefGoogle ScholarPubMed
Kirsch, L. P., Dawson, K., & Cross, E. S. (2015). Dance experience sculpts aesthetic perception and related brain circuits. Annals of the New York Academy of Sciences, 1337, 130139.CrossRefGoogle ScholarPubMed
Kirsch, L., Drommelschmidt, K. A., & Cross, E. S. (2013). The impact of sensorimotor experience on affective evaluation of dance. Frontiers in Human Neuroscience, 7, 110. doi: 10.3389/fnhum.2013.00521.Google Scholar
Kirsch, L. P., Snagg, A., Heerey, E., & Cross, E. S. (2016). The impact of experience on affective responses during action observation. PLoS One, 11(5), e0154681.CrossRefGoogle ScholarPubMed
Liew, S. L., Sheng, T., & Aziz-Zadeh, L. (2013a). Experience with an amputee modulates one’s own sensorimotor response during action observation. NeuroImage, 69, 138145. doi: 10.1016/j.neuroimage.2012.12.028.CrossRefGoogle ScholarPubMed
Liew, S. L., Sheng, T., Margetis, J. L., & Aziz-Zadeh, L. (2013b). Both novelty and expertise increase action observation network activity. Frontiers in Human Neuroscience, 7, 541. doi: 10.3389/fnhum.2013.00541.CrossRefGoogle ScholarPubMed
Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 210220. doi: 10.1037/0096-1523.31.1.210.Google ScholarPubMed
Orgs, G., Dombrowski, J.-H., Heil, M., & Jansen-Osmann, P. (2008). Expertise in dance modulates alpha/beta event-related desynchronization during action observation. European Journal of Neuroscience, 27(12), 33803384. doi: 10.1111/j.1460-9568.2008.06271.x.CrossRefGoogle ScholarPubMed
Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176180.CrossRefGoogle ScholarPubMed
Prinz, W. (1990). A common coding approach to perception and action. In Neumann, O. & Prinz, W. (Eds.), Relationships between perception and action: Current approaches. Berlin: Spring-Verlag, 167201.CrossRefGoogle Scholar
Prinz, W. (1997). Perception and action planning. European Journal of Neuroscience, 9(2), 129154.Google Scholar
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Matelli, M., et al. (1996). Localization of grasp representations in humans by PET: 1. Observation versus execution. Experimental Brain Research, 111, 246252.CrossRefGoogle ScholarPubMed
Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225260.CrossRefGoogle Scholar
Seligman, L., & Reichenberg, L. W. (2009). Theories of counseling and psychotherapy: Systems, strategies, and skills: New York: Pearson.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×