Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T13:43:05.007Z Has data issue: false hasContentIssue false

26 - The Impact of Action Expertise on Shared Representations

from Part V - Learning and Development

Published online by Cambridge University Press:  27 October 2016

Sukhvinder S. Obhi
Affiliation:
McMaster University, Ontario
Emily S. Cross
Affiliation:
Bangor University
Get access

Summary

Abstract

Expertise in the motor domain is something we recognize almost instantaneously in other people, whether a gymnast performing a double layout with a twist, a basketball player slam dunking the ball, a Super-G skier descending a steep course at 80 mph, or a dancer executing 11 consecutive spins on one leg without stopping. While we might be able to readily recognize expertise in others, the degree to which action experts can coordinate or move their bodies in profoundly different ways to non-experts raises intriguing questions for those interested in shared representations between self and other in our social world. Namely, how does an observer’s ability to embody an action impact how she perceives that action, and how might perception change as further experience with the observed action is acquired? In this chapter, we address these questions by considering empirical research that explores the relationship between an actor and an observer’s motor abilities, and how expertise impacts this relationship.

Type
Chapter
Information
Shared Representations
Sensorimotor Foundations of Social Life
, pp. 541 - 562
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: Role of the STS region. Trends in Cognitive Sciences, 4(7), 267278.CrossRefGoogle ScholarPubMed
Arbib, M. A. (1981). Perceptual structures and distributed motor control. In Brooks, V. B. (Ed.), Handbook of physiology :The nervous system II. Motor control. Bethesda, MD: American Physiological Society, 14491480.Google Scholar
Arbib, M.A., & Rizzolatti, G. (1999). Neural expectations: A possible evolutionary path from manual skills to language. In Loocke, P. V. (Ed.), The nature of concepts. Evolution, structure and representation. New York: Routledge, 128154.Google Scholar
Aziz-Zadeh, L., Sheng, T., Liew, S. L., & Damasio, H. (2012). Understanding otherness: The neural bases of action comprehension and pain empathy in a congenital amputee. Cerebral Cortex, 22(4), 811819. doi: 10.1093/cercor/bhr139.CrossRefGoogle Scholar
Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex, 15(8), 12431249.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Grézes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16(19), 19051910.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Ehrenberg, S., Leung, D., & Haggard, P. (2010). Experts see it all: Configural effects in action observation. Psychological Research, 74(4), 400406. doi: 10.1007/s00426-009-0262-y.CrossRefGoogle ScholarPubMed
Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology, 16(1), 6974. doi: 10.1016/j.cub.2005.10.071.CrossRefGoogle ScholarPubMed
Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo: Observation of dance by dancers. NeuroImage, 31(3), 12571267.CrossRefGoogle ScholarPubMed
Cross, E. S., Kraemer, D. J., Hamilton, A. F., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19(2), 315326.CrossRefGoogle ScholarPubMed
Cross, E. S., Liepelt, R., de , C. Hamilton, A. F., Parkinson, J., Ramsey, R., et al. (2012). Robotic movement preferentially engages the action observation network. Human Brain Mapping, 33(9), 22382254. doi: 10.1002/hbm.21361.CrossRefGoogle ScholarPubMed
Cross, E. S., Stadler, W., Parkinson, J., Schütz-Bosbach, S., & Prinz, W. (2013). The influence of visual training on predicting complex action sequences. Human Brain Mapping, 34(2), 467486. doi: 10.1002/hbm.21450.CrossRefGoogle ScholarPubMed
Decety, J., Grezes, J., Costes, N., Perani, D., Jeannerod, M., et al. (1997). Brain activity during observation of actions: Influence of action content and subject’s strategy. Brain, 120(Pt 10), 17631777.CrossRefGoogle ScholarPubMed
Ericsson, K. A., Krampe, R. T., & Tesch-Romer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363406.CrossRefGoogle Scholar
Ferrari, P. F., Rozzi, S., & Fogassi, L. (2005). Mirror neurons responding to observation of actions made with tools in monkey ventral premotor cortex. Journal of Cognitive Neuroscience, 17(2), 212226. doi: 10.1162/0898929053124910.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119 (Pt 2), 593609.CrossRefGoogle ScholarPubMed
Gallese, V., Gernsbacher, M. A., Heyes, C., Hickock, G., & Iacoboni, M. (2011). Mirror neuron forum. Perspectives on Psychological Science, 6, 369407.CrossRefGoogle ScholarPubMed
Gallese, V., Rochat, M., Cossu, G., & Sinigaglia, C. (2009). Motor cognition and its role in the phylogeny and ontogeny of action understanding. Developmental Psychology, 45(1), 103113. doi: 2008-19282-002 [pii] 10.1037/a0014436.CrossRefGoogle ScholarPubMed
Garrison, K. A., Aziz-Zadeh, L., Wong, S. W., Liew, S. L., & Winstein, C. J. (2013). Modulating the motor system by action observation after stroke. Stroke, 44(8), 22472253. doi: 10.1161/STROKEAHA.113.001105.CrossRefGoogle ScholarPubMed
Gilaie-Dotan, S., Harel, A., Bentin, S., Kanai, R., & Rees, G. (2012). Neuroanatomical correlates of visual car expertise. NeuroImage, 62(1), 147153. doi: 10.1016/j.neuroimage.2012.05.017.CrossRefGoogle ScholarPubMed
Grafton, S. T., Arbib, M. A., Fadiga, L., & Rizzolatti, G. (1996). Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Experimental Brain Research, 112(1), 103111.CrossRefGoogle ScholarPubMed
Grézes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12(1), 119.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Grossman, E. D., Battelli, L., & Pascual-Leone, A. (2005). Repetitive TMS over posterior STS disrupts perception of biological motion. Vision Research, 45(22), 28472853.CrossRefGoogle ScholarPubMed
Hommel, B., Musseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24(5), 849878.CrossRefGoogle ScholarPubMed
James, W. (1890). Principles of psychology. New York: Holt.Google Scholar
Jeannerod, M. (1997). The cognitive neuroscience of action. Oxford: Wiley-Blackwell.Google Scholar
Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14, 201211.CrossRefGoogle Scholar
Kirsch, L. P., & Cross, E. S. (2015). Additive routes to action learning: Layering experience shapes engagement of the action observation network. Cerebral Cortex, 25, 47994811.CrossRefGoogle ScholarPubMed
Kirsch, L. P., Dawson, K., & Cross, E. S. (2015). Dance experience sculpts aesthetic perception and related brain circuits. Annals of the New York Academy of Sciences, 1337, 130139.CrossRefGoogle ScholarPubMed
Kirsch, L., Drommelschmidt, K. A., & Cross, E. S. (2013). The impact of sensorimotor experience on affective evaluation of dance. Frontiers in Human Neuroscience, 7, 110. doi: 10.3389/fnhum.2013.00521.Google Scholar
Kirsch, L. P., Snagg, A., Heerey, E., & Cross, E. S. (2016). The impact of experience on affective responses during action observation. PLoS One, 11(5), e0154681.CrossRefGoogle ScholarPubMed
Liew, S. L., Sheng, T., & Aziz-Zadeh, L. (2013a). Experience with an amputee modulates one’s own sensorimotor response during action observation. NeuroImage, 69, 138145. doi: 10.1016/j.neuroimage.2012.12.028.CrossRefGoogle ScholarPubMed
Liew, S. L., Sheng, T., Margetis, J. L., & Aziz-Zadeh, L. (2013b). Both novelty and expertise increase action observation network activity. Frontiers in Human Neuroscience, 7, 541. doi: 10.3389/fnhum.2013.00541.CrossRefGoogle ScholarPubMed
Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 210220. doi: 10.1037/0096-1523.31.1.210.Google ScholarPubMed
Orgs, G., Dombrowski, J.-H., Heil, M., & Jansen-Osmann, P. (2008). Expertise in dance modulates alpha/beta event-related desynchronization during action observation. European Journal of Neuroscience, 27(12), 33803384. doi: 10.1111/j.1460-9568.2008.06271.x.CrossRefGoogle ScholarPubMed
Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176180.CrossRefGoogle ScholarPubMed
Prinz, W. (1990). A common coding approach to perception and action. In Neumann, O. & Prinz, W. (Eds.), Relationships between perception and action: Current approaches. Berlin: Spring-Verlag, 167201.CrossRefGoogle Scholar
Prinz, W. (1997). Perception and action planning. European Journal of Neuroscience, 9(2), 129154.Google Scholar
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Matelli, M., et al. (1996). Localization of grasp representations in humans by PET: 1. Observation versus execution. Experimental Brain Research, 111, 246252.CrossRefGoogle ScholarPubMed
Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225260.CrossRefGoogle Scholar
Seligman, L., & Reichenberg, L. W. (2009). Theories of counseling and psychotherapy: Systems, strategies, and skills: New York: Pearson.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×