Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T13:36:07.614Z Has data issue: false hasContentIssue false

19 - Complementary Actions

from Part IV - Understanding Others

Published online by Cambridge University Press:  27 October 2016

Sukhvinder S. Obhi
Affiliation:
McMaster University, Ontario
Emily S. Cross
Affiliation:
Bangor University
Get access

Summary

Abstract

Human beings come into the world wired for social interaction. At the fourteenth week of gestation, twin fetuses already display interactive movements specifically directed towards their co-twin. Readiness for social interaction is also clearly expressed by the newborn who imitates facial gestures, suggesting that there is a common representation mediating action observation and execution. While actions that are observed and those that are planned seem to be functionally equivalent, it is unclear if the visual representation of an observed action inevitably leads to its motor representation. This is particularly true with regard to complementary actions (from the Latin complementum; i.e. that fills up), a specific class of movements which differ, while interacting, with observed ones. In geometry, angles are defined as complementary if they form a right angle. In art and design, complementary colors are color pairs that, when combined in the right proportions, produce white or black. As a working definition, complementary actions refer here to any form of social interaction wherein two (or more) individuals complete each other’s actions in a balanced way. Successful complementary interactions are founded on the abilities: (1) to simulate another person’s movements; (2) to predict another person’s future action/s; (3) to produce an appropriate congruent/incongruent response that completes the other person’s action/s; and (4) to integrate the predicted effects of one’s own and another person’s actions. It is the neurophysiological mechanism that underlies this process which forms the main theme of this chapter.

Type
Chapter
Information
Shared Representations
Sensorimotor Foundations of Social Life
, pp. 392 - 416
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11, 11091116.CrossRefGoogle ScholarPubMed
Aglioti, S. M., & Pazzaglia, M. (2011). Sounds and scents in (social) action. Trends in Cognitive Sciences, 15 (2011), 4755.CrossRefGoogle ScholarPubMed
Avenanti, A. & Urgesi, C. (2011). Understanding ‘what’ others do: Mirror mechanisms play a crucial role in action perception. Social Cognitive and Affective Neuroscience, 6, 257259.CrossRefGoogle ScholarPubMed
Becchio, C., Cavallo, A., Begliomini, C., Sartori, L., Feltrin, G., & Castiello, U. (2012b). Social grasping: From mirroring to mentalizing. NeuroImage, 61, 240248.CrossRefGoogle ScholarPubMed
Becchio, C., Manera, V., Sartori, L., Cavallo, A., & Castiello, U. (2012a). Grasping intentions: From thought experiments to empirical evidence. Frontiers in Human Neuroscience, 6, 16.CrossRefGoogle ScholarPubMed
Becchio, C., Sartori, L., Bulgheroni, M., & Castiello, U. (2008a). The case of Dr. Jekyll and Mr. Hyde: A kinematic study on social intention. Consciousness and Cognition, 17, 557564.CrossRefGoogle Scholar
Becchio, C., Sartori, L., Bulgheroni, M., (2008b). Both your intention and mine are reflected in the kinematics of my reach to grasp movement. Cognition, 106, 894912.CrossRefGoogle ScholarPubMed
Becchio, C., Sartori, L., & Castiello, U. (2010). Towards you: The social side of actions. Current Directions in Psychological Science, 19, 183188.CrossRefGoogle Scholar
Bekkering, H., de Bruijn, E., Cuijpers, R., Newman-Norlund, R., van Schie, H., & Meulenbroek, R. (2009). Joint action: Neurocognitive mechanisms supporting human interaction. Topics in Cognitive Science, 1, 340352.CrossRefGoogle ScholarPubMed
Blakemore, S. J., & Frith, C. (2005). The role of motor contagion in the prediction of action. Neuropsychologia, 43, 260267.CrossRefGoogle ScholarPubMed
Brass, M., Derrfuss, J., & von Cramon, D. Y. (2005). The inhibition of imitative and overlearned responses: A functional double dissociation. Neuropsychologia, 43, 8998.CrossRefGoogle ScholarPubMed
Brass, M., Zysset, S., & von Cramon, D. Y. (2001). The inhibition of imitative response tendencies. NeuroImage, 14, 14161423.CrossRefGoogle ScholarPubMed
Bratman, M. E. (1992). Shared cooperative activity. Philosophical Review, 101, 327341.CrossRefGoogle Scholar
Bruin, L. de, & Gallagher, S. (2012). Embodied simulation, an unproductive explanation: Comment on Gallese and Sinigaglia. Trends in Cognitive Sciences, 16, 9899.CrossRefGoogle ScholarPubMed
Castiello, U., Becchio, C., Zoia, S., Nelini, C., Sartori, L., et al. (2010). Wired to be social: The ontogeny of human interaction. PLoS One, 5, e13199.CrossRefGoogle ScholarPubMed
Cavallo, A., Becchio, C., Sartori, L., Bucchioni, G., & Castiello, U. (2012). Grasping with tools: Corticospinal excitability reflects observed hand movements. Cerebral Cortex, 22, 710716.CrossRefGoogle ScholarPubMed
Cavallo, A., Sartori, L., & Castiello, U. (2011). Corticospinal excitability modulation to hand muscles during the observation of appropriate versus inappropriate actions. Cognitive Neuroscience, 2, 8390.CrossRefGoogle ScholarPubMed
Chemero, A. (2003). An outline of a theory of affordances. Ecological Psychology, 15, 181195.CrossRefGoogle Scholar
Chinellato, E., & del Pobil, A. P. (2009). The neuroscience of vision-based grasping: A functional review for computational modeling and bio-inspired robotics. Journal of Integrative Neuroscience, 8, 223254.CrossRefGoogle ScholarPubMed
Chinellato, E., Ognibene, D., Sartori, L., & Demiris, Y. (2013). Time to change: Deciding when to switch action plans during a social interaction. In Lepora, N. F., Mura, A., Krapp, H. G., Verschure, P. F. M. J., & Prescott, T. J. (Eds.), Biomimetic and biohybrid systems. London: Springer, 4758.CrossRefGoogle Scholar
Costantini, M., Ambrosini, E., Scorolli, C., & Borghi, A. M. (2011a). When objects are close to me: Affordances in the peripersonal space. Psychonomic Bulletin and Review, 18, 302308.CrossRefGoogle ScholarPubMed
Costantini, M., Ambrosini, E., Tieri, G., Sinigaglia, C., & Committeri, G. (2010). Where does an object trigger an action? An investigation about affordances in space. Experimental Brain Research, 207, 95103.CrossRefGoogle ScholarPubMed
Costantini, M., Committeri, G., & Sinigaglia, C. (2011b). Ready both to your and to my hands: Mapping the action space of others. PLoS One, 6, e17923.CrossRefGoogle Scholar
Craighero, L., Fadiga, L., Rizzolatti, G., & Umilta, C. (1998). Visuomotor priming. Visual Cognition, 5, 109125.CrossRefGoogle Scholar
De Stefani, D., Innocenti, A., De Marco, D., Busiello, M., Ferri, F., et al. (2014). The spatial alignment effect in near and far space: A kinematic study. Experimental Brain Research, 18.Google ScholarPubMed
Dezecache, G., Conty, L., & Grèzes, J. (2013). Social affordances: Is the mirror neuron system involved? Behavioral and Brain Sciences, 36, 417418.CrossRefGoogle ScholarPubMed
Di Paolo, E., & De Jaegher, H. (2012). The interactive brain hypothesis. Frontiers in Human Neuroscience, 6, 116.CrossRefGoogle ScholarPubMed
Erlhagen, W., Mukovskiy, A., Bicho, E., Panin, G., Kiss, A., et al. (2006). Goal-directed imitation for robots: A bio-inspired approach to action understanding and skill learning. Robotics and Autonomous Systems, 54, 353360.CrossRefGoogle Scholar
Etzel, J. A., Gazzola, V., & Keysers, C. (2008). Testing simulations theory with cross-model multivariate classification of fMRI data. PLoS One, 3, 16.CrossRefGoogle Scholar
Fabbri-Destro, M., & Rizzolatti, G. (2008). Mirror neurons and mirror systems in monkeys and humans. Physiology, 23, 171179.CrossRefGoogle ScholarPubMed
Fadiga, L., Craighero, L., & Olivier, E. (2005). Human motor cortex excitability during the perception of others’ action. Current Opinion in Neurobiology, 15, 213218.CrossRefGoogle ScholarPubMed
Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73, 26082611.CrossRefGoogle ScholarPubMed
Fogassi, L., & Gallese, V. (2002). The neural correlates of action understanding in non-human primates. Advances in Consciousness Research, 42, 1336.CrossRefGoogle Scholar
Gallagher, H. L., & Frith, C. D. (2004). Dissociable neural pathways for the perception and recognition of expressive and instrumental gestures. Neuropsychologia, 42, 17251736.CrossRefGoogle ScholarPubMed
Gallese, , V. (2001). The shared manifold hypothesis. From mirror neurons to empathy. Journal of Consciousness Studies, 8, 57.Google Scholar
Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2, 493501.CrossRefGoogle ScholarPubMed
Gallese, V., & Sinigaglia, C. (2011). What is so special about embodied simulation? Trends in Cognitive Sciences, 15, 512519.CrossRefGoogle ScholarPubMed
Gangopadhyay, N., & Schilbach, L. (2012). Seeing minds: A neurophilosophical investigation of the role of perception–action coupling in social perception. Social Neuroscience, 7, 410423.CrossRefGoogle ScholarPubMed
Gazzola, V., van der Worp, H., Mulder, T., Wicker, B., Rizzolatti, G., & Keysers, C. (2007). Aplasics born without hands mirror the goal of hand actions with their feet. Current Biology, 17, 12351240.CrossRefGoogle ScholarPubMed
Gentilucci, M., Castiello, U., Corradini, M. L., Scarpa, M., Umiltà, C., & Rizzolatti, G. (1991). Influence of different types of grasping on the transport component of prehension movements. Neuropsychologia, 29, 361378.CrossRefGoogle ScholarPubMed
Georgiou, I., Becchio, C., Glover, S., & Castiello, U. (2007). Different action patterns for cooperative and competitive behaviour. Cognition, 102, 415433.CrossRefGoogle ScholarPubMed
Gibson, E. (2000). The dependency locality theory: A distance-based theory of linguistic complexity. In Miyashita, Y., Marantz, A., & O’Niel, W. (Eds.), Image, language, brain. Cambridge, MA: MIT Press, 95126.Google Scholar
Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.Google Scholar
Giorello, G., & Sinigaglia, C. (2007). Perception in action. Acta Biomedica, 78, 4957.Google ScholarPubMed
Graf, M., Schütz-Bosbach, S., & Prinz, W. (2009). Motor involvement in action and object perception: Similarity and complementarity. New York: Psychology Press.Google Scholar
Heyes, , C. (2011). Automatic imitation. Psychological Bulletin, 137, 463483.CrossRefGoogle ScholarPubMed
Jeannerod, , M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral Brain Sciences, 17, 187245.CrossRefGoogle Scholar
Keysers, C. (2009). Mirror neurons. Current Biology, 19, R971R973.CrossRefGoogle ScholarPubMed
Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: An account of the mirror neuron system. Cognitive Processes, 8, 159166.CrossRefGoogle ScholarPubMed
Kilner, J. M., Vargas, C., Duval, S., Blakemore, S. J., & Sirigu, A. (2004). Motor activation prior to observation of a predicted movement. Nature Neuroscience, 7, 12991301.CrossRefGoogle ScholarPubMed
Knoblich, G., Butterfill, S., & Sebanz, N. (2011). Psychological research on joint action: Theory and data. In Ross, B. (Ed.), The psychology of learning and motivation. Burlington, VT: Academic Press, 59–101.Google Scholar
Knoblich, G., & Flach, R. (2001). Predicting the effects of actions: Interactions of perception and action. Psychological Science, 2, 467472.CrossRefGoogle Scholar
Kohler, E., Keysers, C., Umiltà, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing sounds, understanding actions: Action representation in mirror neurons. Science, 297, 846848.CrossRefGoogle ScholarPubMed
Kokal, I., Gazzola, V., & Keysers, C. (2009). Acting together in and beyond the mirror neuron system. NeuroImage, 47, 20462056.CrossRefGoogle ScholarPubMed
Kokal, I., & Keysers, C. (2010). Granger causality mapping during joint actions reveals evidence for forward models that could overcome sensory-motor delays. PLoS One, 5, e13507.CrossRefGoogle ScholarPubMed
Longo, M. R., Kosobud, A., & Bertenthal, B. I. (2008). Automatic imitation of biomechanically possible and impossible actions: Effects of priming movements versus goals. Journal of Experimental Psychology: Human Perception and Performance, 34, 489501.Google ScholarPubMed
Manera, V., Becchio, C., Cavallo, A., Sartori, L., & Castiello, U. (2011). Cooperation or competition? Discriminating between social intentions by observing prehensile movements. Experimental Brain Research, 211, 547556.CrossRefGoogle ScholarPubMed
Meltzoff, A. N. (2005). Imitation and other minds: The ‘like me’ hypothesis. In Hurley, S. & Chater, N. (Eds.), Perspectives on imitation: From cognitive neuroscience to social science, Volume 2. Cambridge, MA: MIT Press, 5577.Google Scholar
Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2012). Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neuroscience and Biobehavioral Reviews, 36, 341349.CrossRefGoogle ScholarPubMed
Murata, A., Fadiga, L., Fogassi, L., Gallese, V., Raos, V., & Rizzolatti, G. (1997). Object representation in the ventral premotor cortex (area F5) of the monkey. Journal of Neurophysiology, 78, 22262230.CrossRefGoogle ScholarPubMed
Napier, J. R. (1956). The prehensile movements of the human hand. Journal of Bone and Joint Surgery, 38, 902913.CrossRefGoogle ScholarPubMed
Newman-Norlund, R. D., Bosga, J., Meulenbroek, R. G., & Bekkering, H. (2008). Anatomical substrates of cooperative joint-action in a continuous motor task: Virtual lifting and balancing. NeuroImage, 41, 169177.CrossRefGoogle Scholar
Newman-Norlund, R. D., Noordzij, M. L., Meulenbroek, R. G., & Bekkering, H. (2007a). Exploring the brain basis of joint action: Co-ordination of actions, goals and intentions. Social Neuroscience, 2, 4865.CrossRefGoogle ScholarPubMed
Newman-Nordlund, R. D., van Schie, H. T., van Zuijlen, A. M., & Bekkering, H. (2007b). The mirror neuron system is more activated during complementary compared with imitative action. Nature Neuroscience, 10, 817818.CrossRefGoogle Scholar
Ocampo, B., & Kritikos, A. (2010). Placing actions in context: Motor facilitation following observation of identical and non-identical manual acts. Experimental Brain Research, 201, 743751.CrossRefGoogle ScholarPubMed
Ocampo, B., Kritikos, A., & Cunnington, R. (2011). How frontoparietal brain regions mediate imitative and complementary actions: An fMRI study. PLoS One, 6, e26945.CrossRefGoogle ScholarPubMed
Pellegrino, G. di, Fadiga, L. Fogassi, L., Gallese, , & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176180.CrossRefGoogle ScholarPubMed
Poljac, E., van Schie, H. T., & Bekkering, H. (2009). Understanding the flexibility of action–perception coupling. Psychological Research, 73, 578586.CrossRefGoogle ScholarPubMed
Prinz, , W. (2006). What re-enactment earns us. Cortex, 42, 515517.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Cattaneo, L., Fabbri-Destro, M., & Rozzi, S. (2014). Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiological Reviews, 94, 655706.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Review Neuroscience, 2, 661670.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264274.CrossRefGoogle ScholarPubMed
Sacheli, L. M., Tidoni, E., Pavone, E. F., Aglioti, S. M., & Candidi, M. (2013). Kinematic fingerprints of leader and follower role-taking during cooperative joint actions. Experimental Brain Research, 226, 473486.CrossRefGoogle ScholarPubMed
Sartori, L., & Castiello, U. (2013). Shadows in the mirror. Neuroreport, 24, 6367.CrossRefGoogle ScholarPubMed
Sartori, L., Becchio, C., Bara, B. G., & Castiello, U. (2009a). Does the intention to communicate affect action kinematics? Consciousness and Cognition, 18, 766772.CrossRefGoogle ScholarPubMed
Sartori, L., Becchio, C., Bulgheroni, M., & Castiello, U. (2009b). Modulation of the action control system by social intention: Unexpected social requests override preplanned action. Journal of Experimental Psychology: Human Perception and Performance, 35, 14901500.Google ScholarPubMed
Sartori, L., Becchio, C., & Castiello, U. (2011a). Cues to intention: The role of movement information. Cognition, 119, 242252.CrossRefGoogle ScholarPubMed
Sartori, L., Begliomini, C., & Castiello, U. (2013a). Motor resonance in left- and right-handers: Evidence for effector-independent motor representations. Frontiers in Human Neuroscience, 13, 733.Google Scholar
Sartori, L., Begliomini, C., Panozzo, C., Garolla, A., & Castiello, U. (2014). The left side of motor resonance. Frontiers in Human Neuroscience, 8, 702.CrossRefGoogle ScholarPubMed
Sartori, L., Betti, S., & Castiello, U. (2013b). When mirroring is not enough: That is, when only a complementary action will do (the trick). Neuroreport, 24, 601604.CrossRefGoogle ScholarPubMed
Sartori, L., Betti, S., (2013c). Corticospinal excitability modulation during action observation. Journal of Visualized Experiments, 82, e51001.Google Scholar
Sartori, L., Betti, B., Chinellato, E., & Castiello, U. (2015a). The multiform motor cortical output: Kinematic, predictive and response coding. Cortex, 70, 169178.CrossRefGoogle ScholarPubMed
Sartori, L., Bucchioni, G., & Castiello, U. (2012a). Motor cortex excitability is tightly coupled to observed movements. Neuropsychologia, 50, 23412347.CrossRefGoogle ScholarPubMed
Sartori, L., Bucchioni, G., (2013d). When emulation becomes reciprocity. Social Cognitive and Affective Neuroscience, 8, 662669.CrossRefGoogle ScholarPubMed
Sartori, L., Bulgheroni, M., Tizzi, R., & Castiello, U. (2015b). A kinematic study on (un)intentional imitation in bottlenose dolphins. Frontiers in Human Neuroscience, 5(9), 446.Google Scholar
Sartori, L., Cavallo, A., Bucchioni, G., & Castiello, U. (2011b). Corticospinal excitability is specifically modulated by the social dimension of observed actions. Experimental Brain Research, 211, 557568.CrossRefGoogle ScholarPubMed
Sartori, L., Cavallo, A., Bucchioni, B., & Castiello, U. (2012b). From simulation to reciprocity: The case of complementary actions. Social Neuroscience, 7, 146158.CrossRefGoogle ScholarPubMed
Sartori, L., Xompero, F., Bucchioni, G., & Castiello, U. (2012c). The transfer of motor functional strategies via action observation. Biology Letters, 8, 193196.CrossRefGoogle ScholarPubMed
Schütz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: Action-induced modulation of perception. Trends in Cognitive Sciences, 11, 349355.CrossRefGoogle ScholarPubMed
Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: Bodies and minds moving together. Trends in Cognitive Sciences, 10, 7076.CrossRefGoogle ScholarPubMed
Shibata, H., Inui, T., & Ogawa, K. (2011). Understanding interpersonal action coordination: An fMRI study. Experimental Brain Research, 211, 569579.CrossRefGoogle ScholarPubMed
Schie, H. T. van, Koelewijn, T., Jensen, O., Oostenveld, R., Maris, E., & Bekkering, H. (2008a). Evidence for fast, low-level motor resonance to action observation: An MEG study. Social Neuroscience, 3, 213228.CrossRefGoogle ScholarPubMed
Schie, H. T. van, Waterschoot, B. M., & Bekkering, H. (2008b). Understanding action beyond imitation: Reversed compatibility effects of action observation in imitation and joint action. Journal of Experimental Psychology: Human Perception and Performance, 34, 14931500.Google ScholarPubMed
Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24, 830846.Google ScholarPubMed
Turella, L., Tubaldi, F., Erb, M., Grodd, W., & Castiello, U. (2012). Object presence modulates activity within the somatosensory component of the action observation network. Cerebral Cortex, 22, 668679.CrossRefGoogle ScholarPubMed
Urgesi, C., Candidi, M., Fabbro, F., Romani, M., & Aglioti, S. M. (2006). Motor facilitation during action observation: Topographic mapping of the target muscle and influence of the onlooker’s posture. European Journal of Neuroscience, 23, 25222530.CrossRefGoogle ScholarPubMed
Wilson, W., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131, 460473.CrossRefGoogle ScholarPubMed
Wolpert, D. M. & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11, R729R732.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×