from Part Four - Applications
Published online by Cambridge University Press: 05 February 2012
Micro-robots, unmanned aerial vehicles, imaging sensor networks, wireless phones, and other embedded vision systems all require low cost and high-speed implementations of synthetic vision systems capable of recognizing and categorizing objects in a scene.
Many successful object recognition systems use dense features extracted on regularly spaced patches over the input image. The majority of the feature extraction systems have a common structure composed of a filter bank (generally based on oriented edge detectors or 2D Gabor functions), a nonlinear operation (quantization, winner-take-all, sparsification, normalization, and/or pointwise saturation), and finally a pooling operation (max, average, or histogramming). For example, the scale-invariant feature transform (SIFT) (Lowe, 2004) operator applies oriented edge filters to a small patch and determines the dominant orientation through a winner-take-all operation. Finally, the resulting sparse vectors are added (pooled) over a larger patch to form a local orientation histogram. Some recognition systems use a single stage of feature extractors (Lazebnik, Schmid, and Ponce, 2006; Dalal and Triggs, 2005; Berg, Berg, and Malik, 2005; Pinto, Cox, and DiCarlo, 2008).
Other models such as HMAX-type models (Serre, Wolf, and Poggio, 2005; Mutch, and Lowe, 2006) and convolutional networks use two more layers of successive feature extractors. Different training algorithms have been used for learning the parameters of convolutional networks. In LeCun et al. (1998b) and Huang and LeCun (2006), pure supervised learning is used to update the parameters. However, recent works have focused on training with an auxiliary task (Ahmed et al., 2008) or using unsupervised objectives (Ranzato et al., 2007b; Kavukcuoglu et al., 2009; Jarrett et al., 2009; Lee et al., 2009).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.