Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T16:02:25.740Z Has data issue: false hasContentIssue false

7 - Marsh Equilibrium Theory

Implications for Responses to Rising Sea Level

from Part II - Marsh Dynamics

Published online by Cambridge University Press:  19 June 2021

Duncan M. FitzGerald
Affiliation:
Boston University
Zoe J. Hughes
Affiliation:
Boston University
Get access

Summary

The analysis presented here was motivated by an objective of describing the interactions between the physical and biological processes governing the responses of tidal wetlands to rising sea level and the ensuing equilibrium elevation. We define equilibrium here as meaning that the elevation of the vegetated surface relative to mean sea level (MSL) remains within the vertical range of tolerance of the vegetation on decadal time scales or longer. The equilibrium is dynamic, and constantly responding to short-term changes in hydrodynamics, sediment supply, and primary productivity. For equilibrium to occur, the magnitude of vertical accretion must be great enough to compensate for change in the rate of sea-level rise (SLR). SLR is defined here as meaning the local rate relative to a benchmark, typically a gauge. Equilibrium is not a given, and SLR can exceed the capacity of a wetland to accrete vertically.

Type
Chapter
Information
Salt Marshes
Function, Dynamics, and Stresses
, pp. 157 - 177
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alizad, K., Hagen, S. C., Morris, J. T., Medeiros, S. C., Bilskie, M. V., and Weishampel, J. F. 2016. Coastal wetland response to sea level rise in a fluvial estuarine system. Earth’s Future, 4. doi:10.1002/2016EF000385CrossRefGoogle Scholar
Allen, J. R. L. 1990. Saltmarsh growth and stratification: a numerical model with special reference to the Severn Estuary, southwest Britain. Marine Geology, 95: 796.Google Scholar
Barbier, E. B., Hacker, S. D. Kennedy, C., Koch, E. W., Stier, A. C., and Silliman, B. R. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs, 81: 169193.CrossRefGoogle Scholar
Baumfalk, Y. A. 1979. On the pumping activity of Arenicola marina. Netherlands Journal of Sea Research, 13: 422427.Google Scholar
Benner, R., Fogel, M. L., Sprague, E. K., and Hodson, R. E. 1987. Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature, 329: 708710.CrossRefGoogle Scholar
Benner, R., and Hodson, R. E. 1985. Microbial degradation of the leachable and lignocellulosic components of leaves and wood from Rhizophora mangle in a tropical mangrove swamp. Marine Ecology Progress Series, 23: 221230.Google Scholar
Buth, G. J. C., and Voesenek, L. A. C. J. 1987. Decomposition of standing and fallen litter of halophytes in a Dutch salt marsh. In: Huiskes, A. H. L., Blom, C. W. P. M., and Rozema, J., eds., Geobotany 11: Vegetation Between Land and Sea. Dr. W. Junk Publishers, Dordrecht, pp. 146165.CrossRefGoogle Scholar
Cahoon, D., and Guntenspergen, G. 2010. Climate change, sea-level rise, and coastal wetlands. National Wetlands Newsletter, 32: 812.Google Scholar
Cahoon, D. R., White, D. A., and Lynch, J. C. 2011. Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta. Geomorphology, 131: 5768.CrossRefGoogle Scholar
Callaway, J. C., Borgnis, E. L., Turner, R. E., and Milan, C. S. 2012. Carbon sequestration and sediment accretion in San Francisco Bay tidal wetlands. Estuaries & Coasts, 35: 11631181.CrossRefGoogle Scholar
Callaway, J. C., Nyman, J. A., and DeLaune, R. D. 1996. Sediment accretion in coastal wetlands: a review and a simulation model of processes. Current Topics in Wetland Biogeochemistry, 2: 223.Google Scholar
Callaway, J. C., Schile, L. M., Borgnis, E. L., Busnardo, M., Archbald, G., and Duke, R. 2013. Sediment dynamics and vegetation recruitment in newly restored salt ponds – Final Report for Pond A6 Sediment Study: Submitted to Resources Legacy Fund and South Bay Salt Pond Restoration Project, 29 p., www.southbayrestoration.org/documents/technical/Pond%20A6%20FINAL%20report.COMBINED.08.21.2013.pdfGoogle Scholar
Ciutat, A., Widdows, J., and Readman, J. W. 2006. Influence of cockle Cerastoderma edule bioturbation and tidal-current cycles on resuspension of sediment and polycyclic aromatic hydrocarbons. Marine Ecology Progress Series, 328: 5164.CrossRefGoogle Scholar
Costanza, R., Perez-Maqueo, O., Martinez, M. L., Sutton, P. Anderson, S., and Mulder, K. 2008. The value of coastal wetlands for hurricane protection. Ambio, 37: 241248.CrossRefGoogle ScholarPubMed
Craft, C., Clough, J. Ehman, J. Joye, S. Park, R., Pennings, S., Guo, H., and Machmuller, M. 2009. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology, 7: 7378.CrossRefGoogle Scholar
Craft, C. B., Megonigal, J. P., Broome, S. W., Cornell, J., Freese, R., Stevenson, R. J., Zheng, L., and Sacco, J. 2003. The pace of ecosystem development of constructed Spartina alterniflora marshes. Ecological Applications, 13: 14171432.Google Scholar
Craft, C. B., Seneca, E. D., and Broome, S. W. 1993. Vertical accretion in regularly and irregularly flooded microtidal estuarine marshes. Estuarine Coastal and Shelf Science, 37: 371386.CrossRefGoogle Scholar
Dangendorf, S., Marcos, M., Wöppelmann, G., Conrad, C. P., Frederikse, T., and Riva, R. 2017. Reassessment of 20th century global mean sea level rise. Proceedings of the National Academy of Sciences of the USA, 114: 59465951.CrossRefGoogle ScholarPubMed
Darby, F. A., and Turner, R. E. 2008. Below- and aboveground biomass of Spartina alterniflora: Response to nutrient addition in a Louisiana salt marsh. Estuaries and Coasts, 31: 326334.CrossRefGoogle Scholar
Davidson-Arnott, R. G. D., van Proosdij, D., Ollerhead, J., and Schostak, L. E. 2002. Hydrodynamics and sedimentation in salt marshes: examples from a macro-tidal marsh, Bay of Fundy. Geomorphology, 48: 209231CrossRefGoogle Scholar
Davis, J. L., Currin, C. A., O’Brien, C., Raffenburg, C., and Davis, A. 2015. Living shorelines: Coastal resilience with a blue carbon benefit. PLOS ONE, 10(11): e0142595. doi: 10.1371/journal.pone.0142595CrossRefGoogle ScholarPubMed
de Deckere, E. M. G. T., Tolhurst, T. J., and de Brouwera, J. F. C. 2001. Destabilization of cohesive intertidal sediments by infauna. Estuarine, Coastal and Shelf Science, 53: 665-669.CrossRefGoogle Scholar
Dijkema, K. S., Bossinade, J. H., Bouwsema, P., and de Glopper, R. J. 1990. Salt marshes in the Netherlands Wadden Sea: Rising high-tide levels and accretion enhancement. In: Beukema, J. J., Wolff, W. J, and Brouns, J. J. W. M., eds., Developments in Hydrobiology 57: Expected Effects of Climatic Change on Marine Coastal Ecosystems. Springer, Dordrecht, pp. 173188.CrossRefGoogle Scholar
Drake, K., Halifax, H., Adamowicz, S. C., and Craft, C. 2015. Carbon sequestration in tidal salt marshes of the northeast United States. Environmental Management, 56: 9981008.CrossRefGoogle ScholarPubMed
Esselink, P., and Zwarts, L. 1989. Seasonal trend in burrow depth and tidal variation in feeding activity of Nereis diversicolor. Marine Ecology Progress Series, 56: 243254.CrossRefGoogle Scholar
Federer, C. A., Turcotte, D. E., and Smith, C. T. 1993. The organic fraction–bulk density relationship and the expression of nutrient content in forest soils. Canadian Journal of Forest Research, 23: 10261032.CrossRefGoogle Scholar
French, J. R. 1993. Numerical simulation of vertical marsh growth and adjustment to accelerated sea-level rise, North Norfolk, UK. Earth Surface Processes and Landforms, 18: 6381.CrossRefGoogle Scholar
He, Y., Widney, S. E., Ruan, M., Herbert, E. R., Li, X., and Craft, C. 2016. Accumulation of soil carbon drives denitrification potential and laboratory-incubated greenhouse gas flux along a chronosequence of salt marsh development. Estuarine, Coastal and Shelf Science, 172: 7280.Google Scholar
Hodson, R. E., Christian, R. R., and Maccubbin, A. E. 1984. Lignocellulose and lignin in the salt marsh grass Spartina alterniflora: initial concentrations and short-term, post-depositional changes in detrital matter. Marine Biology, 81: 17.Google Scholar
Kirwan, M. L., Guntenspergen, G. R., D’Alpaos, A., Morris, J. T., Mudd, S. M., and Temmerman, S. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters, 37: L23401. doi: 10.1029/2010GL045489.CrossRefGoogle Scholar
Kirwan, M. L., and Murray, A. B. 2007. A coupled geomorphic and ecological model of tidal marsh evolution. Proceedings of the National Academy of Sciences of the USA, 104: 61186122,CrossRefGoogle ScholarPubMed
Krone, R. B. 1987. A method for simulating historic marsh elevations. In: Krause, N. C., ed., Coastal Sediments ′87: American Society of Civil Engineers, New York, NY, pp. 316323.Google Scholar
Krüger, F. 1964. Messungen der Pumptätigkeit von Arenicola marina L. im Watt. Helgoländer wissenschaftliche Meeresuntersuchungen, 11: 7091.CrossRefGoogle Scholar
Leonard, L. A. 1997. Controls on sediment transport and deposition in an incised mainland marsh basin, southeastern North Carolina. Wetlands, 17: 263274.CrossRefGoogle Scholar
Lovelock, C. E., Bennion, V., Grinham, A., and Cahoon, D. R. 2011. The role of surface and subsurface processes in keeping pace with sea level rise in intertidal wetlands of Moreton Bay, Queensland, Australia. Ecosystems, 14: 745757.CrossRefGoogle Scholar
Marani, M, Da Lio, C., and D’Alpaos, A. 2013. Vegetation engineers marsh morphology through multiple competing stable states. Proceedings of the National Academy of Sciences of the USA, 110: 32593263.CrossRefGoogle ScholarPubMed
Marion, C., Anthony, E. J., and Trentesaux, A. 2009. Short-term (≤2 yrs) estuarine mudflat and saltmarsh sedimentation: High-resolution data from ultrasonic altimetery, rod surface-elevation table, and filter traps. Estuarine, Coastal and Shelf Science, 83: 475484.CrossRefGoogle Scholar
McKee, K. L., and Patrick, W. Jr 1988. The relationship of smooth cordgrass (Spartina alterniflora) to tidal datums: a review. Estuaries, 11: 143151.CrossRefGoogle Scholar
Mendelssohn, I. A., and Morris, J. T. 2000. Ecophysiological controls on the growth of Spartina alterniflora. In: Weinstein, N. P., and Kreeger, D. A., eds., Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Dordrecht, pp. 5980.Google Scholar
Morris, J. T. 2006. Competition among marsh macrophytes by means of geomorphological displacement in the intertidal zone. Estuarine and Coastal Shelf Science, 69: 395402.Google Scholar
Morris, J. T. 2007. Ecological engineering in intertidal saltmarshes. Hydrobiologia, 577: 161168.CrossRefGoogle Scholar
Morris, J. T., Barber, D. C., Callaway, J.C., Chambers, R., Hagen, S. C., Hopkinson, C. S., Johnson, B. J. et al. 2016. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state, Earth’s Future, 4. doi: 10.1002/2015EF000334.CrossRefGoogle ScholarPubMed
Morris, J. T., and Bowden, , W. B. 1986. A mechanistic, numerical model of sedimentation, mineralization, and decomposition for marsh sediments. Soil Science Society of America Journal, 50: 96105.Google Scholar
Morris, J. T., Edwards, J., Crooks, S., and Reyes, E. 2012. Assessment of carbon sequestration potential in coastal wetlands. In Lal, R., Lorenz, K., Hüttl, R., Schneider, B. U., and von Braun, J., eds., Recarbonization of the Biosphere: Ecosystem and Global Carbon Cycle. Springer, Dordrecht, pp. 517531.Google Scholar
Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B., and Cahoon, D. R. 2002. Responses of coastal wetlands to rising sea level. Ecology, 83: 28692877.CrossRefGoogle Scholar
Morris, J. T., Sundberg, K., and Hopkinson, C. S. 2013. Salt marsh primary production and its responses to relative sea level and nutrients in estuaries at Plum Island, Massachusetts, and North Inlet, South Carolina, USA. Oceanography, 26: 7884.Google Scholar
Mudd, S. M., D’Alpaos, A., and Morris, J. T. 2010. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. Journal of Geophysical Research-Earth Surface, 115, F03029, doi: 10.1029/2009JF001566.CrossRefGoogle Scholar
Mudd, S. M., Fagherazzi, S., Morris, J. T., and Furbish, D. J. 2004. Flow, sedimentation, and biomass production on a vegetated salt marsh in South Carolina: toward a predictive model of marsh morphologic and ecologic evolution. In: Fagherazzi, S., Marani, A., and Blum, L. K., eds., The Ecogeomorphology of Tidal MarshesAmerican Geophysical Union, Washington, DC, pp. 165187.Google Scholar
Mudd, S. M., Howell, S., and Morris, J. T. 2009. Impact of the dynamic feedback between sedimentation, sea level rise, and biomass production on near surface marsh stratigraphy and carbon accumulation. Estuarine, Coastal and Shelf Science, 82: 377389.Google Scholar
Narayan, S., Beck, M. W., Wilson, P., Thomas, C. J., Guerrero, A., Shepard, C. C., Reguero, B. G., Franco, G., Ingram, J. C., and Trespalacios, D. 2017. The value of coastal wetlands for flood damage reduction in the northeastern USA. Scientific Reports, 7. doi: 10.1038/s41598-017-09269-z.CrossRefGoogle ScholarPubMed
Neubauer, S. C. 2008. Contributions of mineral and organic components to tidal freshwater marsh accretion. Estuarine, Coastal and Shelf Science, 78: 7888.Google Scholar
Neubauer, S. C., Anderson, I. C., Constantine, J. A., and Kuehl, S. A. 2002. Sediment deposition and accretion in a mid-Atlantic (U.S.A.) tidal freshwater marsh. Estuarine, Coastal and Shelf Science, 54: 713727.CrossRefGoogle Scholar
Nyman, J. A., Delaune, R. D., Walters, R. J., and Patrick, W. H. Jr 1993. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Marine Ecology Progress Series, 96: 269279.Google Scholar
Oliver, F.W. 1925. Spartina townsendii: Its mode of establishment, economic uses and taxonomic status. Journal of Ecology, 13: 7491Google Scholar
Pethick, J. 1981. Long-term accretion rates on tidal salt marshes. Journal of Sedimentary Petrology, 51: 571577.CrossRefGoogle Scholar
Randerson, P. F. 1979. A simulation model of salt-marsh development and plant ecology.  In: Knights, B. and Phillips, A. J., eds., Estuarine and Coastal Reclamation and Water Storage. Saxon House, Farnborough, pp. 4867.Google Scholar
Ranwell, D. S. 1964. Spartina salt marshes in Southern England. II: Rate and seasonal pattern of sediment accretion. Journal of Ecology, 52: 7994.CrossRefGoogle Scholar
Reddy, K. R., Osborne, T. Z., Inglett, K. S., and Corstanje, R. 2006. Influence of water levels on subsidence of organic soils in the upper St. Johns River basin. Final Report SH45812, St. Johns Water Management District. Palatka, FL.Google Scholar
Richard, G. A. 1978. Seasonal and environmental variations in sediment accretion in a Long Island salt marsh. Estuaries, 1: 2935.Google Scholar
Schile, L. M., Callaway, J. C., Morris, J. T., Stralberg, D., Parker, V. T., and Kell, M. 2014. Modeling tidal wetland distribution with sea-level rise: Evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. PLOS ONE, 9: e88760. doi: 10.1371/journal.pone.0088760CrossRefGoogle ScholarPubMed
Shepard, C. C., Crain, C. M., and Beck, M. W. 2011. The protective role of coastal marshes: A systematic review and meta-analysis. PLOS ONE, 6: e27374.CrossRefGoogle ScholarPubMed
Stapf, O. 1907. Mud binding grasses. Bulletin of Miscellaneous Information (Royal Botanic Gardens, Kew), 1907: 190197.Google Scholar
Stewart, V. I., Adams, W. A., and Abdulla, H. H. 1970. Quantitative pedological studies on soils derived from Silurian mudstones. Journal of Soil Science, 21: 248255.CrossRefGoogle Scholar
Temmerman, S., Govers, G., Wartel, S., and Meire, P. 2004. Modelling estuarine variations in tidal marsh sedimentation: response to changing sea level and suspended sediment concentrations. Marine Geology, 211: 119.CrossRefGoogle Scholar
Thompson, P. R., Hamlington, B. D., Landerer, F. W., and Adhikari, S. 2016. Are long tide gauge records in the wrong place to measure global mean sea level rise? Geophysics Research Letters, 43: 403410,411.CrossRefGoogle Scholar
Torres, J. J., Gluck, D. L., and Childress, J. J. 1977. Activity and physiological significance of the pleopods in the respiration of Callianassa californiensis (Dana) (Crustacea: Thalassinidea). Biological Bulletin, 152: 134146.CrossRefGoogle ScholarPubMed
Turner, R. E., Swenson, E. M., and Milan, C. S. 2000. Organic and inorganic contributions to vertical accretion in salt marsh sediments. In: Weinstein, M. P., and Kreeger, D. A., eds., Concepts and Controversies in Tidal Marsh Ecology, Kluwer Academic Publishers, Dordrecht, pp. 583595.Google Scholar
Vader, W. J. M. 1964. A preliminary investigation into the reactions of the infauna of the tidal flats to tidal fluctuations in water level. Netherlands Journal of Sea Research, 2: 189222.CrossRefGoogle Scholar
van Proosdij, D., Ollerhead, J., and Davidson-Arnott, R. G. D. 2006. Seasonal and annual variations in the sediment mass balance of a macro-tidal salt marsh. Marine Geology, 225: 103127.CrossRefGoogle Scholar
Volkenborn, N., Polerecky, L., Wethey, D. S., and Woodin, S. A. 2010. Oscillatory porewater bioadvection in marine sediments induced by hydraulic activities of Arenicola marina. Limnology and Oceanography, 55: 12311247.CrossRefGoogle Scholar
Webb, A. P., and Eyre, B. D. 2004. Effect of natural populations of burrowing thalassinidean shrimp on sediment irrigation, benthic metabolism, nutrient fluxes and denitrification. Marine Ecology Progress Series, 268: 205220.CrossRefGoogle Scholar
Weston, N. B. 2014. Declining sediments and rising seas: an unfortunate convergence for tidal wetlands, Estuaries and Coasts, 37: 123.CrossRefGoogle Scholar
Widdows, R. J., Blauw, A., Heip, C. H. R., Herman, P. M. J., Lucas, C. H., Middelburg, J. J., Schmidt, S., Brinsley, M. D., Twisk, F., and Verbeek, H. 2004. Role of physical and biological processes in sediment dynamics of a tidal flat in Westerschelde Estuary, SW the Netherlands. Marine Ecology Progress Series, 274: 4156.CrossRefGoogle Scholar
Williams, P. B., and Orr, M. K. 2002. Physical evolution of restored breached levee salt marshes in the San Francisco Bay estuary. Restoration Ecology, 10: 527542Google Scholar
Wilson, J. O., Buchsbaum, R., Valiela, I., and Swain, T. 1986. Decomposition in salt marsh ecosystems: phenolic dynamics during decay of litter of Spartina alterniflora. Marine Ecology Progress Series, 29: 177187.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×