Published online by Cambridge University Press: 05 July 2011
Rigidity in dynamics
In a very general sense, modern theory of smooth dynamical systems deals with smooth actions of “sufficiently large but not too large” groups or semigroups (usually locally compact but not compact) on a “sufficiently small” phase space (usually compact, or, sometimes, finite volume manifolds). Important branches of dynamics specifically consider actions preserving a geometric structure with an infinite-dimensional group of automorphisms, two principal examples being a volume and a symplectic structure. The natural equivalence relation for actions is differentiable (corr. volume preserving or symplectic) conjugacy.
One version of the general notion of rigidity in this context would refer to a certain class A of actions being described by a finite set of parameters, usually smooth moduli. Examples of such classes are all actions in the neighborhood of a given one, or all actions of a continuous group with the same orbits, or all G-extensions of a given action α to a given principal G-bundle. In some situations this is too strong and, rather than classifying all actions from A, one may require that actions equivalent to a given one have a finite codimension in a properly defined sense, e.g., appear in typical or generic finite-parametric families of actions.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.