[1] R. L., Adler, B., Weiss. Entropy, a complete metric invariant for automorphisms of the torus. Proc. Nat. Acad. Sci. 57 (1967) 1575–1576.
[2] D. V., Anosov. Geodesic flows on closed Riemannian manifolds with negative curvature. Proc. Stek. Inst. 90 (1967) 1–235.
[3] N., Aoki. A simple proof of Bernoullicity of automorphisms of compact abelian groups. Isr. J. Math. 38 (1981) 189–198.
[4] L., Auslander, J., Scheuneman. On certain automorphisms of nilpotent Lie groups. Proc. Symp. Pure Math. 14 (1970) 9–15.
[5] H., Bercovici, V., Niţică. A Banach algebra version of the Livšic theorem. Discrete Contin. Dynam. Systems 4 (1998) 523–534.
[6] L., Barreira, Ya., Pesin. Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents. Cambridge: Cambridge University Press, 2007.
[7] D., Berend. Multi-invariant sets on tori. Trans. Amer. Math. Soc. 280 (1983) 509–532.
[8] Z. I., Borevich, I. R., Shafarevich. Number Theory. New York: Academic Press, 1966.
[9] R., Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math. 470. New York: Springer, 1975.
[10] G. E., Bredon. Introduction to Compact Transformations Groups. New York: Academic Press, 1972.
[11] M. I., Brin. Topological transitivity of a class of dynamical systems and frame flow on manifolds of negative curvature. Func. Anal. and Appl. 9 (1975) 9–19.
[12] M. I., Brin, Y. A., Pesin. Partially hyperbolic dynamical systems. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974) 170–212.
[13] K. S., Brown. Cohomology of Groups. Graduate Texts in Math. 87. Berlin: Springer-Verlag, 1982.
[14] S., Campanato. Proprieta di una famiglia di spazi functionali. Ann. Scuola Norm. Sup. Pisa 18 (1964) 137–160.
[15] C., Chevalley. Deux théorèmes d'Arithmétique. J. Math. Soc. of Japan 3 (1951) 36–44.
[16] H., Cohen. A Course in Computational Algebraic Number Theory. Berlin-Heidelberg-New York: Springer, 1996.
[17] P., Collet, H., Epstein, G., Gallavotti. Perturbations of geodesic flows on surfaces of constant negative curvature and their mixing properties. Com. Math. Phys. 95 (1984) 61–112.
[18] M., Cowling. Sur les Coeficients des Representations Unitaires des Groupes de Lie Simple. Lecture Notes in Math. 739. Berlin: Springer-Verlag, 1979, pp. 132–178.
[19] D., Damjanovic. Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions. J. Mod. Dyn. 1 (2007) 665–688.
[20] D., Damjanovic, A., Katok. Local rigidity of actions of higher rank abelian groups and KAM method. Electronic Res. Announce. Amer. Math. Soc. 10 (2004) 142–154.
[21] D., Damjanovic, A., Katok. Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic actions. Discrete Contin. Dynam. Systems 13 (2005) 985–1005.
[22] D., Damjanovic, A., Katok. Local rigidity of partially hyperbolic actions I. KAM method and ℤk actions on the torus. Annals Math. (2010), to appear.
[23] D., Damjanovic, A., Katok. Local rigidity of partially hyperbolic actions. II. The geometric method and restrictions of Weyl chamber flows on SL(n, ℝ)/ Г, available online at http://www.math.psu.edu/katok a.
[24] D., Damjanovic, A., Katok. Local rigidity of homogeneous parabolic actions: I. A model case, preprint, 2010.
[25] S. G., Dani, M. G., Mainkar. Anosov automorphisms on compact nilmanifolds associated with graphs. Trans Amer. Math. Soc. 357 (2005) 2235–2251.
[26] P., Didier. Stability of accessibility. Ergodic Theory Dynam. Systems 23 (2003) 1717–1731.
[27] D., Dolgopyat, A., Wilkinson. Stable accessibility is C1 dense. Geometric methods in dynamics. II. Astérisque 287 (2003) 33–60.
[28] M., Einsiedler, A., Katok. Invariant measures on G/Г for split simple Lie Groups G. Comm. Pure. Appl. Math. (Moser memorial issue) 56 (2003) 1184–1221.
[29] M., Einsiedler, A., Katok. Rigidity of measures – the high entropy case and non-commuting foliations. Israel Math. J. 148 (2005) 169–238.
[30] M., Einsiedler, A., Katok, E., Lindenstrauss. Invariant measures and the set of exceptions to Littlewood's conjecture. Annals of Math. 164 (2006) 513–560.
[31] M., Einsiedler, E., Lindenstrauss. Rigidity properties of ℤd -actions on tori and solenoids. Electronic Res. Announce. Math. Soc. 9 (2004) 99–110.
[32] R., Feres, A., Katok. Ergodic theory and dynamics of G-spaces, in Handbook of Dynamical Systems, vol. 1A. Amsterdam: Elsevier, 2002, pp. 665–763.
[33] S., Ferleger, A., Katok. Non-commutative first cohomology rigidity of the Weyl chamber flows, preprint, 1997.
[34] D., Fisher. Local rigidity of group actions: past, present, future, in Dynamics, Ergodic Theory and Geometry. Cambridge: Cambridge University Press, 2007.
[35] D., Fisher, G., Margulis. Almost isometric actions, property T, and local rigidity. Inventiones Math. 162 (2005) 19–80.
[36] D., Fisher, G., Margulis. Local rigidity of affine actions of higher rank Lie groups and their lattices. Annals Math. 170 (2009) 67–122.
[37] L., Flaminio, G., Forni. Invariant distributions and time averages for horocycle flows. Duke Math. J. 119 (2003) 465–526.
[38] G., Forni. Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus. Ann. Math. 146 (1997) 295–344.
[39] J., Franks. Anosov diffeomorphisms on tori. Trans. Amer. Math. Soc. 145 (1969) 117–124.
[40] H., Furstenberg. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Systems Theory 1 (1967) 1–49.
[41] E., Goetze, R. J., Spatzier. Smooth classification of Cartan actions of higher rank semisimple Lie groups and their lattices. Ann. Math. 150 (1999) 743–773.
[42] E., Goetze, R. J., Spatzier. On Livsic's theorem, superrigidity, and Anosov actions of semisimple Lie groups. Duke Math. J. 88 (1997) 1–27.
[43] V., Guillemin, D., Kazhdan. Some inverse spectral results for negatively curved 2-manifolds. Topology 19 (1980) 301–313.
[44] R., Hamilton. The inverse limit theorem of Nash and Moser. Bull. Amer. Math. Soc. 7 (1982) 65–222.
[45] P., de la Harpe, A., Valette. La propriété (T) de Kazhdan pour les groupes localement compacts. Astérisque 175 (1989).
[46] B., Hasselblatt. Hyperbolic dynamical systems, in Handbook of Dynamical Systems, vol. 1A. Amsterdam: Elsevier, 2002, pp. 239–319.
[47] B., Hasselblatt, A., Katok. Principal structures, in Handbook of Dynamical Systems, vol. 1A. Amsterdam: Elsevier, 2002, pp. 1–203.
[48] S., Helgason. Differential Geometry, Lie Groups and Symmetric Spaces. New York: Academic Press, 1978.
[49] F. R., Hertz, M. A. R., Hertz, R., Ures. Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1d-center bundle. Inventiones Math. 172 (2008) 353–381.
[50] M., Hirsch. Differential Topology. Graduate Texts in Math. 33. New York: Springer-Verlag 1976.
[51] M., Hirsch, C., Pugh, M., Shub. Invariant Manifolds. Lecture Notes in Math. 583. Berlin: Springer Verlag, 1977.
[52] L., Hörmander. Hypoelliptic second order differential equations. Acta Mathematica 119 (1967) 147–171.
[53] R., Howe. A notion of rank for unitary representations of the classical groups, in A., Figa Talamanca (ed.), Harmonic Analysis and Group Representations. Firenze, Italy: CIME, 1980.
[54] S., Hurder. Affine Anosov actions. Michigan Math. J. 40 (1993) 561–575.
[55] S., Hurder. Rigidity of Anosov actions of higher rank lattices. Annals Math. 135 (1992) 361–410.
[56] S., Hurder, A., Katok. Differentiability, rigidity and Godbillon–Vey classes for Anosov flows. Publ. Math. IHES 72 (1990) 5–61.
[57] H. C., Im Hof. An Anosov action on the bundle of Weyl chambers. Ergodic Theory Dynam. Systems 5 (1985) 587–593.
[58] J.-L., Journé. A regularity lemma for functions of several variables. Revista Matematica Iberoamericana 4 (1988) 187–193.
[59] B., Kalinin. Livšic theorem for matrix cocycles. Annals of Math, to appear.
[60] B., Kalinin, A., Katok. Invariant measures for actions of higher rank abelian groups, in Smooth Ergodic Theory and its Applications. Proc. Symp. Pure Math 69. Providence, RI: Amer. Math. Soc., 2001, pp. 593–637.
[61] B., Kalinin, A., Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for Cartan actions on tori. J. Mod. Dyn. 1 (2007) 123–146.
[62] B., Kalinin, A., Katok, F., Rodriguez Hertz. Nonuniform measure rigidity. Annals of Math., to appear.
[63] B., Kalinin, V., Sadovskaya. On local and global rigidity of quasi-conformal Anosov diffeomorphisms. J. Inst. Math. Jussieu 2–4 (2003) 567–582.
[64] B., Kalinin, R., Spatzier. On the classification of Cartan actions. Geom. Func. Anal. 17 (2007) 468–490.
[65] M., Kanai. Rigidity of Weil chamber flow, and vanishing theorems of Matsushima and Weil. Ergod. Theory Dynam. Systems 29 (2009) 1273–1288.
[66] A., Katok. Combinatorial Constructions in Ergodic Theory and Dynamics. University Lecture Series 30. Providence, RI: Agmerican Mathematical Society, 2003.
[67] A., Katok, B., Hasselblatt. Introduction to the Modern Theory of Dynamical Systems. Cambridge: Cambridge University Press, 1995.
[68] A., Katok, S., Katok. Higher cohomology for abelian groups of toral automorphisms. Ergodic Theory Dynam. Systems 15 (1995) 569–592.
[69] A., Katok, S., Katok. Higher cohomology for abelian groups of toral automorphisms. II. The partially hyperbolic case, and corrigendum. Ergodic Theory Dynam. Systems 25 (2005) 1909–1917.
[70] A., Katok, S., Katok, K., Schmidt. Rigidity of measurable structure for ℤd -actions by automorphisms of a torus. Comm. Math. Helvetici 77 (2002) 718–745.
[71] A., Katok, A., Kononenko. Cocycles' stability for partially hyperbolic systems. Math. Res. Lett. 3 (1996) 191–210.
[72] A., Katok, V., Niţică. Rigidity of higher rank abelian cocycles with values in diffeomorphism groups. Geometriae Dedicata. 124 (2007) 109–131.
[73] A., Katok, V., Niţică, A., Török. Non-abelian cohomology of abelian Anosov actions. Ergodic Theory Dynam. Systems 2 (2000) 259–288.
[74] A., Katok, F., Rodriguez Hertz. Uniqueness of large invariant measures for ℤk actions with Cartan homotopy data. J. Mod. Dyn. 1 (2007) 287–300.
[75] A., Katok, F., Rodriguez Hertz. Measure and cocycle rigidity for certain non-uniformly hyperbolic actions of higher rank abelian groups. J. Mod. Dyn. 4 (2010), to appear.
[76] A., Katok, F., Rodriguez Hertz. Rigidity of real-analytic actions of SL(n, ℤ) on Tn: A case of realization of Zimmer program. Discrete Contin. Dynam. Systems 27 (2010) 609–615.
[77] A., Katok, K., Schmidt. The cohomology of expansive ℤd -actions by automorphisms of compact, abelian groups. Pacific J. Math 170 (1995) 105–142.
[78] A., Katok, R., Spatzier. First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity. Inst. Hautes Études Sci. Publ. Math. 79 (1994) 131–156.
[79] A., Katok, R., Spatzier. Subelliptic estimates of polynomial differential operators and applications to rigidity of abelian actions. Math. Res. Letters 1 (1994) 193–202.
[80] A., Katok, R., Spatzier. Invariant measures for higher rank hyperbolic Abelian actions. Ergodic Theory Dynam. Systems 16 (1996) 751–778.
[81] A., Katok, R., Spatzier. Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions. Tr. Mat. Inst. Steklova 216 (1997) 292–319.
[82] S., Katok. Finite spanning sets for cusp forms and a related geometric result. J. Reine Angew. Math. 395 (1989) 186–195.
[83] Y., Katznelson. Ergodic automorphisms on Tn are Bernoulli shifts. Israel J. Math. 10 (1971) 186–195.
[84] D., Kleinbock, N., Shah, A., Starkov. Dynamics of subgroup actions on homogeneous spaces of Lie groups and applications to number theory in: Handbook of Dynamical Systems, vol. 1A. Amsterdam: Elsevier, 2002, pp. 813–930.
[85] A. W., Knapp. Representation Theory of Semisimple Groups: an Overview Based on Examples. Princeton, NJ: Princeton University Press, 2001.
[86] A., Kononenko. Twisted cocycles and rigidity problems. Electron. Res. Announc. Amer. Math. Soc. 1 (1995) 26–34.
[87] N., Kopell. Commuting diffeomorphisms. Proc. Symp. Pure Math. 14 (1970) 165–184.
[88] S., Krantz. Lipschitz spaces, smoothness of functions and approximation theory. Expo. Math. 3 (1983) 193–260.
[89] R., Krikorian. Reducibility, differentiable rigidity and Lyapunov exponents for quasi-periodic cocycles on T × SL(2, ℝ), preprint.
[90] S., Lang. Algebra. Reading, MA: Addison-Wesley, 1984.
[91] S., Lang. Introduction to Differentiable Manifolds. New York: Interscience, 1962.
[92] J., Lauret. Examples of Anosov diffeomorphisms. J. Algebra 262 (2003) 201–209.
[93] F., Ledrappier. Un champ markovien peut être d'entropie nulle et mélangeant. C. R. Acad. Sci. Paris Sér. A-B 287 (1978) A561–A563.
[94] K. B., Lee, F., Raymond. Geometric realization of group extensions by the Seifert construction. Contemporary Math. AMS 33 (1984) 353–411.
[95] E., Lindenstrauss. Rigidity of multiparameter actions. Israel Math. J. 149 (2005) 199–226.
[96] A., Livšic. Homology properties of U-systems. Math. Zametki 10 (1971) 758–763.
[97] A., Livšic. Cohomology of dynamical systems. Math. USSR Izvestija 6 (1972) 1278–1301.
[98] R., de la Llave. Invariants for smooth conjugacy of hyperbolic dynamical systems. I. Comm. Math. Phys. 109 (1987) 369–378.
[99] R., de la Llave. Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic dynamical systems. Commun. Math. Phys. 150 (1992) 289–320.
[100] R., de la Llave. Analytic regularity of solutions of Livšic's cohomology equation and some applications to analytic conjugacy of hyperbolic dynamical systems. Ergodic Theory Dynam. Systems 17 (1997) 649–662.
[101] R., de la Llave. Remarks on Sobolev regularity in Anosov systems. Ergodic Theory Dynam. Systems 21 (2001) 1139–1180.
[102] R., de la Llave. Tutorial on KAM theory, in Smooth Ergodic Theory and its Applications Proc. Symp. Pure Math 69. RI: American Mathematical Society, Providence, 2001, pp. –.
[103] R., de la Llave. Bootstrap of regularity for integrable solutions of cohomology equations, in Modern Dynamical Systems and Applications, M., Brin, B., Hasselblatt, Ya. B., Pesin (eds). Cambridge: Cambridge University Press, 2004, pp. 405–418.
[104] R., de la Llave, J., Marco, R., Moriyon. Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation. Ann. of Math. 123 (1986) 537–611.
[105] R., de la Llave, R., Moriyon. Invariants for smooth conjugacy of hyperbolic dynamical systems IV. Comm. Math. Phys. 116 (1988) 185–192.
[106] C., Lobry. Controllability of nonlinear systems on compact manifolds. SIAM J. Control 12 (1974) 1–4.
[107] A., Malćev. On a class of homogenous spaces. Transl. Amer. Math. Soc. 1 (1962) 276–307.
[108] W., Malfait. An obstruction to the existence of Anosov diffeomorphisms on infra-nilmanifolds. Contemporary Math. 262 (2000) 233–251.
[109] A., Manning. There are no new Anosov diffeomorphisms on tori. Amer. J. Math. 96 (1974) 422–429.
[110] G. A., Margulis. Discrete Subgroups of Semisimple Lie Groups.Berlin: Springer Verlag, 1991.
[111] G. A., Margulis, N., Qian. Local rigidity of weakly hyperbolic actions of higher rank real Lie groups and their lattices, Ergodic Theory Dynam. Systems 21 (2001), 121–164.
[112] H., Matsumoto. Sur les sous-groupes arithmétiques des groupes semi-simples dÉployÉs. Ann. Sci. Éc. Norm. Sup. 4, serie 2 (1969) 1–62.
[113] D., Mieczkowski. The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory. J. Modern Dynam. 1 (2007) 61–92.
[114] G., Metivier. Function spectrale et valeur propres d'une classe d'operateurs non elliptiques. Communi. PDE 1 (1976), 467–519.
[115] J., Milnor. Introduction to Algebraic K-theory. Princeton, NJ: Princeton University Press, 1971.
[116] D., Montgomery, L., Zippin. A theorem on Lie groups. Bull. Amer. Math. Soc. 48 (1942) 448–452.
[117] C. C., Moore. Exponential decay of correlation coefficients for geodesic flows, in C. C., Moore (ed.), Group Representations, Ergodic Theory, Operator Algebras, and Mathematical Physics. Proceedings of a Conference in Honor of George Mackey. MSRI publications, Springer Verlag, New York: 1987.
[118] C. C., Moore. Decomposition of unitary representations defined by discrete subgroups of nilpotent groups. Annals of Math. 82 (1965), 146–182.
[119] N., Mok, Y. T., Siu, S. K., Yeung. Geometric superrigidity. Invent. Math. 113 (1993), 57–83.
[120] D., Montgomery, L., Zippin, Topological Transformation Groups. New York: Interscience Publishers, 1955.
[121] M. H. A., Newman. A theorem on periodic transformations of spaces. Quart. J. Math. Oxford Ser. 2 (1931), 1–9.
[122] M., Nicol, M., Pollicott. Measurable cocycle rigidity for some non-compact groups. Bull. London Math. Soc. 311 (1999) 529–600.
[123] M., Nicol, M., Pollicott. Livšic's theorem for semisimple Lie groups. Ergodic Theory Dynam. Systems 21 (2001) 1501–1509.
[124] M., Nicol, A., Török. Whitney regularity for the solutions of the coboundary equations on Cantor sets. Math. Phys. Electronic J. 13 (2007) paper 6.
[125] V., Niţică, A., Török. Cohomology of dynamical systems and rigidity of partially hyperbolic actions of higher rank lattices. Duke Math. J. 79 (1995) 751–810.
[126] V., Niţică, A., Török. Regularity results for the solutions of the Livshits cohomology equation with values in diffeomorphism groups. Ergodic Theory Dynam. Systems 16 (1996) 325–333.
[127] V., Niţică, A., Török. Regularity of the transfer map for cohomologous cocycles. Ergodic Theory Dynam. Systems 18 (1998) 1187–1209.
[128] V., Niţică, A., Török. On the cohomology of Anosov actions, in Rigidity in Dynamics and Geometry. Berlin: Springer, 2000, pp. 345–361.
[129] V., Niţică, A., Török. An open dense set of stably ergodic diffeomorphisms in a neighborhood of a non-ergodic one. Topology 40 (2001) 259–278.
[130] V., Niţică, A., Török. Cocycles over abelian TNS actions. Geometriae Dedicata 102 (2003) 65–90.
[131] V., Niţică. Journé's theorem for Cn,ω regularity. Discrete Contin. Dynam. Systems 22 (2008) 413–425.
[132] A. L., Onishchik, E. B., Vinberg. Lie Groups and Lie Algebras.Berlin: Springer-Verlag, 1994.
[133] D., Ornstein. Bernoulli shifts with the same entropy are isomorphic. Adv. Math. 4 (1970) 337–352.
[134] http://pari.math.u-bordeaux.fr/
[135] W., Parry. The Livšic periodic point theorem for non-abelian cocycles. Ergodic Theory Dynam. Systems 19 (1999) 687–701.
[136] W., Parry, M., Pollicott. The Livšic cocycle equation for compact Lie group extensions of hyperbolic systems. J. London Math. Soc. 56 (1997) 405–416.
[137] W., Parry, M., Pollicott. Skew-products and Livsic theory, in Representation Theory, Dynamical Systems, and Asymptotic Combinatorics, V. A., Kaimanovich, A., Lodkin (eds). Adv. Math. Sci. Series 2, 217. Providence, RI: American Mathematical Society, 2006.
[138] M., Pollicott, C. P., Walkden. Livšic theorems for connected Lie groups. Trans. Amer. Math. Soc. 353 (2001) 2879–2895.
[139] M., Pollicott, M., Yuri. Regularity of solutions to the measurable Livshits equation. Trans. Amer. Math. Soc. 351 (1999) 559–568.
[140] H. L., Porteous. Anosov difeomorphisms of flat manifolds. Topology 11 (1972) 307–315.
[141] M., Postnikov. Lie Groups and Lie Algebras. Moskow: Mir Publishers, 1986.
[142] G., Prasad, M. S., Raghunathan. Cartan subgroups and lattices in semi-simple groups. Ann. Math. 96 (1972) 296–317.
[143] C., Pugh, M., Shub. Ergodicity of Anosov actions. Invent. Math. 15 (1972) 1–23.
[144] C., Pugh, M., Shub. Stable ergodicity and julienne quasi-conformality. J. Eur. Math. Soc. (JEMS) 2 (2000) 1–52.
[145] N., Qian. Rigidity Phenomena of group actions on a class of nilmanifolds and Anosov ℝn actions. Unpublished Ph.D. thesis, California Insitute of Technology, 1992.
[146] M. S., Raghunathan. Discrete Subgroups of Lie Groups. Berlin: Springer-Verlag, 1972.
[147] M., Ratner. The rate of mixing for geodesic and horocycle flows. Ergodic Theory Dynam. Systems 7 (1987) 267–288.
[148] M., Ratner. On Raghunathan's measure conjecture. Ann. of Math. 134 (1991) 545–607.
[149] B. L., ReinhartDifferential Geometry of Foliations. Berlin: Springer-Verlag, 1983.
[150] C., Rockland. Hypoellipticity on the Heisenberg group: representation theoretic criteria. Trans. Amer. Math. Soc. 240 (1978) 1–52.
[151] F., Rodriguez Hertz. Global rigidity of certain abelian actions by toral automorphisms. J. Modern Dynam., to appear.
[152] L. P., Rothschild. A criterion for hypoellipticity of operators constructed from vector fields. Commun. PDE 4 (1979) 645–699.
[153] L. P., Rothschild, E., Stein. Hypoelliptic differential operators and nilpotent groups. Acta Math. 1976 247–320.
[154] D., Rudolph. ×2 and ×3 invariant measures and entropy. Ergodic Theory Dynam. Systems 10 (1990) 395–406.
[155] K., Schmidt. The cohomology of higher-dimensional shifts of finite type. Pacific J. Math. 170 (1995) 237–269.
[156] K., Schmidt. Cohomological rigidity of algebraic ℤd -actions. Ergodic Theory Dynam. Systems 15 (1995) 759–805.
[157] K., Schmidt. Dynamical Systems of Algebraic Origin. Basel-Berlin-Boston: Birkhäuser Verlag, 1995.
[158] K., Schmidt. Remarks on Livšic' theory for non-abelian cocycles. Ergodic Theory Dynam. Systems 19 (1999) 703–721.
[159] K., Schmidt, T., Ward. Mixing automorphisms of compact groups and a theorem of Schlickewei. Inventiones Math. 111 (1993) 69–76.
[160] M., Shub. Endomorphisms of compact differentiable manifolds. Amer. J. Math. 96 (1974) 422–429.
[161] Y. G., Sinai. Gibbs measures in ergodic theory. Russ. Math. Surv. 27 (1972) 21–70.
[162] S., Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 (1967) 747–817.
[163] R., Spatzier. Harmonic Analysis in Rigidity Theory. Ergodic theory and its connections with harmonic analysis. London Math. Soc. Lecture Notes Ser. 205. Cambridge: Cambridge University Press, 1995.
[164] A., Starkov. First cohomology group, mixing and minimal sets of commutative group of algebraic action on torus. J. Math. Sci (New York) 95 (1999) 2576–2582.
[165] N., Steenrod. The Topology of Fiber Bundles.Princeton, NJ: Princeton University Press, 1951.
[166] R., Steinberg. Générateurs, relations et revêtements de groupes algébraiques. Colloq. Theorie des groupes algebraiques, Bruxelles (1962) 113–127.
[167] E. M., Stein, G., Weiss. Introduction to Fourier Analysis on Fourier Spaces.Princeton, NJ: Princeton University Press, 1971.
[168] A., Unterberger, J., Unterberger. Hölder estimates and hypoellipticity. Ann. Inst. Fourier 26 (1976) 35–54.
[169] W. A., Veech. Periodic points and invariant pseudomeasures for toral endomorphisms. Ergodic Theory Dynam. Systems 6 (1986) 449–473.
[170] C. P., Walkden. Solutions to the twisted cocycle equation over hyperbolic systems. Discrete Contin. Dynam. Systems 6 2000, 935–946.
[171] Z. J., Wang. Local rigidity of partially hyperbolic actions. J. Mod. Dyn. 4 (2010) 271–327.
[172] Z. J., Wang. New cases of differentiable rigidity for partially hyperbolic actions: symplectic groups and resonance directions. J. Mod. Dyn., to appear.
[173] G., Warner. Harmonic Analysis on Semisimple Lie Groups I. Berlin: Springer Verlag, 1972.
[174] A., Weil. On discrete subgroups of Lie groups I. Annals of Math. 72 (1960) 369–384.
[175] A., Weil. On discrete subgroups of Lie groups II. Annals of Math. 75 (1962) 578–602.
[176] A., Weil. Adels and Algebraic Groups. Progress in Mathematics 23. Boston, MA: Birkhäuser,
[177] E., Weiss. Algebraic Number Theory. New York: Chelsea Publishing Company, 1963.
[178] M. D., Witte. Ratner's Theorems on Unipotent flows. Chicago Lectures in Mathematics, 2005.
[179] R., Zimmer. Ergodic Theory and Semisimple Groups. Boston, MA: Birkhäuser, 1984.