Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T13:18:48.676Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2015

Allan Pinkus
Affiliation:
Technion - Israel Institute of Technology, Haifa
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Ridge Functions , pp. 196 - 201
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aczél, J. [1966]: Functional Equations and their Applications, Academic Press, NewYork.
Adams, R. A. [1975]: Sobolev Spaces, Academic Press, New York.
Aumann, G. [1959]: Über approximative Nomographie. II, Bayer. Akad. Wiss. Math.-Nat. Kl. S.-B. 1959, 27–34.Google Scholar
Aumann, G. [1963]: Approximation by step functions, Proc. Amer. Math. Soc. 14, 477–482.Google Scholar
Bauschke, H. H. [1996]: The approximation of fixed points of compositions of nonexpan-sive mappings in Hilbert space, J. Math. Anal. Appl. 202, 150–159.Google Scholar
Bauschke, H. H., Borwein, J. M. [1996]: On projection algorithms for solving convexfeasibility problems, SIAM Review 38, 367–426.Google Scholar
Białynicki-Birula, A., Schinzel, A. [2008]: Representation of multivariate polynomials bysums of univariate polynomials in linear forms, Colloq. Math. 112, 201–233.Google Scholar
Biermann, O. [1903]: Über Näherungsweise Cubaturen, Monat. Math. Phys. 14, 211–225.Google Scholar
Boij, M., Carlini, E., Geramita, A. V. [2011]: Monomials as sums of powers: the realbinary case, Proc. Amer. Math. Soc. 139, 3039–3043.Google Scholar
Boman, J. [1984]: On the closure of spaces of sums of ridge functions and the range of theX-ray transform, Ann. Inst. Fourier (Grenoble) 34, 207–239.Google Scholar
de Boor, C. [2005]: Divided differences, Surveys in Approximation Theory 1, 46–69.[Online article at] http://www.math.technion.ac.il/satGoogle Scholar
Brachat, J., Comon, P., Mourrain, B., Tsigaridas, E. [2010]: Symmetric tensor decomposition, Lin. Alg. Appl. 433, 1851–1872.Google Scholar
Braess, D., Pinkus, A. [1993]: Interpolation by ridge functions, J. Approx. Theory 73,218–236.Google Scholar
Browder, F. E. [1967]: Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Zeitschr. 100, 201–225.Google Scholar
Bruck, R. E., Reich, S. [1977]: Nonexpansive projections and resolvents of accretive op-erators in Banach spaces, Houston J. Math. 3, 459–470.Google Scholar
de Bruijn, N. G. [1951]: Functions whose differences belong to a given class, Nieuw Arc.Wisk. 23, 194–218.Google Scholar
de Bruijn, N. G. [1952]: A difference property for Riemann integrable functions and for some similar classes of functions, Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indaga-tiones Math. 14, 145–151.Google Scholar
Buck, R. C. [1972]: On approximation theory and functional equations, J. Approx. Theory 5, 228–237.Google Scholar
Buhmann, M. D., Pinkus, A. [1999]: Identifying linear combinations of ridge functions, Adv. Appl. Math. 22, 103–118.Google Scholar
Candès, E. J. [1998]: Ridgelets: Theory and Applications, Ph. D. dissertation, Dept. Statis-tics, Stanford University.
Candès, E. J. [1999]: Harmonic analysis of neural networks, Appl. Comput. Harmonic Anal. 6, 197–218.Google Scholar
Candès, E. J., Donoho, D. L. [1999]: Ridgelets: a key to higher-dimensional intermit-tency·, Philos T. Royal Soc. A 357, 2495–2509.Google Scholar
Cheney, E. W. [1966]: Introduction to Approximation Theory, McGraw-Hill, New York.Google Scholar
Chlebowicz, A., Wołowiec-Musial, M. [2005]: Forms with a unique representation as asum of powers of linear forms, Tatra Mt. Math. Publ. 32, 33–39.Google Scholar
Chung, K. C., Yao, T. H. [1977]: On lattices admitting unique Lagrange interpolations,SIAM J. Numer. Anal. 14, 735–743.Google Scholar
Cohen, A., Daubechies, I., DeVore, R. A., Kerkyacharian, G., Picard, D. [2012]: Capturingridge functions in high dimensions from point queries, Constr. Approx. 35, 225–243.Google Scholar
Comon, P., Golub, G., Lim, L.-H., Mourrain, B. [2008]: Symmetric tensors and symmetrictensor rank, SIAM J. Matrix Anal. Appl. 30, 1254–1279.Google Scholar
Courant, R., Hilbert, D. [1962] Methods of Mathematical Physics, Vol. II, Interscience Publishers, New York.
Dahmen, W., Micchelli, C. A. [1987]: Some remarks on ridge functions, Approx. Theoryand its Appl. 3, 139–143.Google Scholar
Deutsch, F. [1979]: The alternating method of Von Neumann, in Multivariate Approximation Theory, ISNM 51, 83–96, eds. W, Schempp, K, Zeller, Birkhäuser, Basel.
Deutsch, F., Hundal, H. [1997]: The rate of convergence for the method of alternatingprojections, II, J. Math. Anal. Appl. 205, 381–405.Google Scholar
Deutsch, F., Hundal, H. [2010]: Slow convergence of sequences of linear operators II:arbitrary slow convergence, J. Approx. Theory 162, 1717–1738.Google Scholar
Diaconis, P., Shahshahani, M. [1984]: On nonlinear functions of linear combinations,SIAM J. Sci. Stat. Comput. Applications 5, 175–191.Google Scholar
Diliberto, S. P., Straus, E. G. [1951]: On the approximation of a function of several variables by the sum of functions of fewer variables, Pacific J. Math. 1, 195–210.Google Scholar
Donoho, D. L., Johnstone, I. M. [1989]: Projection-based approximation and a duality method with kernel methods, Ann. Statist. 17, 58–106.Google Scholar
Dyn, N., Light, W. A., Cheney, E. W. [1989]: Interpolation by piecewise-linear radial basis functions, J. Approx. Theory 59, 202–223.Google Scholar
Edwards, R. E. [1965]: Functional Analysis, Theory and Applications, Holt, Rinehart & Winston, New York.
Ellison, W. J. [1971]: Waring's problem, Amer. Math. Monthly 78, 10–36.Google Scholar
Erdélyi, A. (Ed.) [1953]: Higher Transcendental Functions, Vol. 2, Bateman Manuscript project, McGraw-Hill, New York.
Falconer, K. J. [1979]: Consistency conditions for a finite set of projections of a function, Math. Proc. Camb. Phil. Soc. 85, 61–68.Google Scholar
Fornasier, M., Schnass, K., Vybı́ral, J. [2012]: Learning functions of few arbitrary linear parameters in high dimensions, Found. Comput. Math. 12, 229–262.Google Scholar
Franchetti, C., Light, W. [1986]: On the von Neumann alternating algorithm in Hilbertspace, J. Math. Anal. Appl. 114, 305–314.Google Scholar
Friedman, J. H., Stuetzle, W. [1981]: Projection pursuit regression, J. Amer. Statist. Assoc. 76, 817–823.Google Scholar
Garkavi, A. L., Medvedev, V. A., Khavinson, S. Ya. [1995]: On existence of a best uniform approximation of a function in two variables by the sums φ(x)+ψ(y), Sibirsk. Mat. Zh. 36, 819–827; English translation in Siberian Math. J. 36, 707–713.Google Scholar
Golomb, M. [1959]: Approximation by functions of fewer variables, in On Numerical Approximation, 275–327, ed. R., Langer, University of Wiscons in Press, Madison.
Halperin, I. [1962]: The product of projection operators, Acta Sci. Math. (Szeged) 23, 96–99.Google Scholar
Hamaker, C., Solmon, D. C. [1978]: The angles between the null spaces of X-rays, J. Math. Anal. and Appl. 62, 1–23.Google Scholar
Hamel, G. [1905]: Eine Basis aller Zahlen und die unstetigen Lösungen der Funktional-gleichung f(x+ y) = f(x) + f(y), Math. Ann. 60, 459–462.Google Scholar
Hardy, G. H., Littlewood, J. E., Pólya, G. [1952]: Inequalities, 2nd edn, Cambridge University Press.
Helgason, S. [1980]: The Radon Transform, Progress in Mathematics 5, Birkhäuser.
Hilbert, D. [1909]: Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl nter Potenzen (Waringsches Problem), Math. Ann. 67, 281–300.Google Scholar
Horn, R. A., Johnson, C. R. [1991]: Topics in Matrix Analysis, Cambridge University Press.
Huber, P. J. [1985]: Projection pursuit, Ann. Statist. 13, 435–475.Google Scholar
Iarrobino, A. [1995]: Inverse system of a symbolic power II. The Waring problem for forms, J. Algebra 174, 1091–1110.Google Scholar
Ismailov, V. E. [2007a]: A note on the best L2 approximation by ridge functions, Appl. Math. E–Notes 7, 71–76.Google Scholar
Ismailov, V. E. [2007b]: Characterization of an extremal sum of ridge functions, J. Comput. Appl. Math. 205, 105–115.Google Scholar
Ismailov, V. E. [2008a]: On the representation by linear superpositions, J. Approx. Theory 151, 113–125.Google Scholar
Ismailov, V. E. [2009]: On the proximinality of ridge functions, Sarajevo J. Math. 5, 109–118.Google Scholar
Ismailov, V. E. [2014]: Approximation by ridge functions and neural networks with abounded number of neurons, to appear in Appl. Anal.
Ismailov, V. E., Pinkus, A. [2013]: Interpolation on lines by ridge functions, J. Approx. Theory 175, 91–113.Google Scholar
John, F. [1955]: Plane Waves and Spherical Means Applied to Partial Differential Equations, Interscience Publishers, Inc., New York.
Jones, L. K. [1987]: On a conjecture of Huber concerning the convergence of projection pursuit regression, Ann. Statist. 15, 880–882.Google Scholar
Jones, L. K. [1992]: A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training, Ann. Statist. 20, 608–613.Google Scholar
Kemperman, J. H. B. [1957]: A general functional equation, Trans. Amer. Math. Society, 86, 28–56.Google Scholar
Khavinson, S. Ya. [1997]: Best Approximation by Linear Superpositions (Approximate Nomography), Transl. Math. Monographs, 159, AMS, Providence, RI.
Kroó, A. [1997]: On approximation by ridge functions, Constr. Approx. 13, 447–460.Google Scholar
Kuczma, M. [1968]: Functional Equations in a Single Variable, PWN – Polish Scientific Publishers, Warszawa.
Lang, H. [1984]: On sums of subspaces in topological vector spaces and an application in theoretical tomography, Appl. Anal. 18, 257–265.Google Scholar
Leshno, M., Lin, V. Ya., Pinkus, A., Schocken, S. [1993]: Multilayer feedforward networks with a non-polynomial activation function can approximate any function, Neural Networks 6, 861–867.Google Scholar
Light, W. A., Cheney, E. W. [1985]: Approximation Theory in Tensor Product Spaces,LNM 1169, Springer-Verlag, Berlin.
Light, W. A., Holland, S. M. [1984]: The L1-version of the Diliberto–Straus algorithm inC(T × S), Proc. Edinburgh Math. Soc. 27, 31–45.Google Scholar
Light, W. A., McCabe, J. H., Phillips, G. M., Cheney, E. W. [1982]: The approximation of bivariate functions by sums of univariate ones using the L1-metric, Proc. Edinburgh Math. Soc. 25, 173–181.Google Scholar
Lin, V. Ya., Pinkus, A. [1993]: Fundamentality of ridge functions, J. Approx. Theory 75, 295–311.Google Scholar
Logan, B. F., Shepp, L. A. [1975]: Optimal reconstruction of a function from its projections, Duke Math. J. 42, 645–659.Google Scholar
Maiorov, V. E. [1999]: On best approximation by ridge functions, J. Approx. Theory 99, 68–94.Google Scholar
Maiorov, V. E. [2010a]: Best approximation by ridge functions in Lp-spaces, Ukr. Math. J. 62, 452–466.Google Scholar
Maiorov, V., Meir, R., Ratsaby, J. [1999]: On the approximation of functional classes equipped with a uniform measure using ridge functions, J. Approx. Theory 99, 95–111.Google Scholar
Maiorov, V. E., Oskolkov, K. I., Temlyakov, V. N. [2002]: Gridge approximation and Radon compass, in Approximation Theory, 284–309, ed. B. D., Bojanov, DARBA, Sofia.
Marshall, D. E., O'Farrell, A. G. [1979]: Uniform approximation by real functions, Fund. Math. 104, 203–211.Google Scholar
Medvedev, V. A. [1991]: On the sum of two closed algebras of continuous functions on acompactum, Funk. Anal. i Pril. 27, 33–36; English translation in Func. Anal. Appl. 27,28–30.Google Scholar
Medvedev, V. A. [1992]: Refutation of a theorem of Diliberto and Straus, Mat. Zametki 51, 78–80; English translation in Math. Notes 51, 380–381.Google Scholar
Mordashev, V. M. [1969]: Best approximations of functions of several variables by sums of functions of fewer variables, Mat. Zametki 5, 217–226; English translation in Math.Notes 5, 132–137.Google Scholar
Murata, N. [1996]: An integral representation of functions using three-layered networksand their approximation bounds, Neural Networks 9, 947–956.Google Scholar
Natterer, F. [1986]: The Mathematics of Computerized Tomography, John Wiley & Sons.
von Neumann, J. [1950]: Functional Operators – Vol. II. The Geometry of Orthogonal Spaces, Annals of Math. Studies #22, Princeton University Press, Princeton, NJ. (Thisis a reprint of mimeographed lecture notes first distributed in 1933.)
Oskolkov, K. I. [1997]: Ridge approximation, Fourier–Chebyshev analysis, and optimal quadrature formulas, Tr. Mat. Inst. Steklova 219, Teor. Priblizh. Garmon. Anal., 269–285; English translation in Proc. Steklov Inst. Math. 219, 265–280.Google Scholar
Oskolkov, K. I. [1999a]: Linear and nonlinear methods for ridge approximation, metric theory of functions and related problems in analysis, 165–195, Izd. Nauchno-Issled.Aktuarno-Finans. Tsentra (AFTs), Moscow, (Russian).Google Scholar
Oskolkov, K. I. [2002]: On representations of algebraic polynomials by superpositions of plane waves, Serdica Math. J. 28, 379–390.Google Scholar
Petersen, B. E., Smith, K. T., Solmon D. C. [1979]: Sums of plane waves, and the rangeof the Radon transform, Math. Ann. 243, 153–161.Google Scholar
Petrushev, P. P. [1998]: Approximation by ridge functions and neural networks, SIAMJ. Math. Anal. 30, 155–189.Google Scholar
Pinkus, A. [1999]: Approximation theory of the MLP model in neural networks, Acta Numerica 8, 143–195.Google Scholar
Pinkus, A. [2013]: Smoothness and uniqueness in ridge function representation, Indagationes Mathematicae 24, 725–738.Google Scholar
Pinkus, A. [2015]: The alternating algorithm in a uniformly convex and uniformly smooth Banach space, J. Math. Anal. Appl. 421, 747–753.Google Scholar
Radon, J. [1948]: Zur mechanischen Kubatur, Monatsh. der Math. Physik 52, 286–300.Google Scholar
Reich, S. [1982]: Nonlinear semigroups, accretive operators, and applications, in Nonlinear Phenomena in Mathematical Sciences, 831–838, ed. V., Lakshmikantham, Academic Press, New York.
Reich, S. [1983]: A limit theorem for projections, Linear and Multilinear Alg. 13, 281–290.Google Scholar
Reznick, B. [1992]: Sums of even powers of real linear forms, Memoirs A. M. S. 463.Google Scholar
Rudin, W. [1973]: Functional Analysis, McGraw-Hill Inc., New York.
Schinzel, A. [2002a]: On a decomposition of polynomials in several variables, J. Théor.Nom. Bordeaux 14, 647–666.Google Scholar
Schinzel, A. [2002b]: On a decomposition of polynomials in several variables, II, Colloq. Math. 92, 67–79.Google Scholar
Schwartz, L. [1944]: Sur certaines familles non fondamentales de fonctions continues, Bull. Soc. Math. France 72, 141–145.Google Scholar
Smith, K. T., Solmon, D. C., Wagner, S. I. [1977]: Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull. Amer. Math. Soc. 83,1227–1270.Google Scholar
Stahl, D., de Boor, C. [2011]: On Radons recipe for choosing correct sites for multivariate polynomial interpolation, J. Approx. Theory 163, 1854–1858.Google Scholar
Stein, E. M., Weiss, G. [1971]: Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton.
Stridsberg, E. [1912]: Sur la démonstration de M. Hilbert du théorème de Waring, Math.Ann. 72, 145–152.Google Scholar
Sun, X. [1993]: Ridge function spaces and their interpolation property, J. Math. Anal. Appl. 179, 28–40.Google Scholar
Svensson, L. [1989]: Functional analytic approach to stability problems in three-dimensional theoretical tomography, J. Math. Anal. Appl. 139, 303–310.Google Scholar
Sylvester, J. J. [1886]: Sur une extension d'un théorème de Clebsch relatif aux courbes duquatrième degré, C. R. Math. Acad. Sci. Paris 102, 1532–1534.Google Scholar
Temlyakov, V. N. [2000]: Weak greedy algorithms, Adv. Comput. Math 12, 213–227.Google Scholar
Temlyakov, V. N. [2011]: Greedy Approximation, Cambridge Monographs on Applied and Computational Math., Vol. 20, Cambridge University Press.
Tyagi, H., Cevher, V. [2014]: Learning non-parametric basis independent models frompoint queries via low-rank methods, Appl. Comput. Harmonic Anal. 37, 389–412.Google Scholar
Usevich, K. [2014]: Decomposing multivariate polynomials with structured low-rank matrix completion, in 21st International Symposium on Mathematical Theory of Networks and Systems, July 7–11, 2014, Groningen, The Netherlands, 1826–1833.
Vostrecov, B. A. [1963]: Conditions for a function of many variables to be representableas a sum of a finite number of plane waves traveling in given directions, Dokl. Akad.Nauk SSSR 153, 16–19; English translation in Soviet Math. Dokl. 4, 1588–1591.Google Scholar
Vostrecov, B. A., Ignat'eva, A. V. [1967]: The existence of best approximation of functions by sums of a finite number of plane waves of given directions in the Lp metric, Dokl.Akad. Nauk SSSR 176, 1225–1228; English translation in Soviet Math. Dokl. 8, 1288–1291.Google Scholar
Vostrecov, B. A., Kreines, M. A. [1961]: Approximation of continuous functions by superpositions of plane waves, Dokl. Akad. Nauk SSSR 140, 1237–1240; English translationin Soviet Math. Dokl. 2, 1326–1329.Google Scholar
Vostrecov, B. A., Kreines, M. A. [1962]: Approximation of a plane wave by superpositionsof plane waves of given directions, Dokl. Akad. Nauk SSSR 144, 1212–1214; Englishtranslation in Soviet Math. Dokl. 3, 875–877.Google Scholar
Weinmann, A. [1994]: The interpolation problem for ridge functions, Numer. Funct.Anal. Optim. 15, 183–186.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Allan Pinkus, Technion - Israel Institute of Technology, Haifa
  • Book: Ridge Functions
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316408124.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Allan Pinkus, Technion - Israel Institute of Technology, Haifa
  • Book: Ridge Functions
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316408124.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Allan Pinkus, Technion - Israel Institute of Technology, Haifa
  • Book: Ridge Functions
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316408124.015
Available formats
×