Skip to main content Accessibility help
×
  • Cited by 37
  • Allan Pinkus, Technion - Israel Institute of Technology, Haifa
Publisher:
Cambridge University Press
Online publication date:
August 2015
Print publication year:
2015
Online ISBN:
9781316408124

Book description

Ridge functions are a rich class of simple multivariate functions which have found applications in a variety of areas. These include partial differential equations (where they are sometimes termed 'plane waves'), computerised tomography, projection pursuit in the analysis of large multivariate data sets, the MLP model in neural networks, Waring's problem over linear forms, and approximation theory. Ridge Functions is the first book devoted to studying them as entities in and of themselves. The author describes their central properties and provides a solid theoretical foundation for researchers working in areas such as approximation or data science. He also includes an extensive bibliography and discusses some of the unresolved questions that may set the course for future research in the field.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Supplemental References
Aczél, J. [1966]: Functional Equations and their Applications, Academic Press, NewYork.
Adams, R. A. [1975]: Sobolev Spaces, Academic Press, New York.
Aumann, G. [1959]: Über approximative Nomographie. II, Bayer. Akad. Wiss. Math.-Nat. Kl. S.-B. 1959, 27–34.
Aumann, G. [1963]: Approximation by step functions, Proc. Amer. Math. Soc. 14, 477–482.
Bauschke, H. H. [1996]: The approximation of fixed points of compositions of nonexpan-sive mappings in Hilbert space, J. Math. Anal. Appl. 202, 150–159.
Bauschke, H. H., Borwein, J. M. [1996]: On projection algorithms for solving convexfeasibility problems, SIAM Review 38, 367–426.
Białynicki-Birula, A., Schinzel, A. [2008]: Representation of multivariate polynomials bysums of univariate polynomials in linear forms, Colloq. Math. 112, 201–233.
Biermann, O. [1903]: Über Näherungsweise Cubaturen, Monat. Math. Phys. 14, 211–225.
Boij, M., Carlini, E., Geramita, A. V. [2011]: Monomials as sums of powers: the realbinary case, Proc. Amer. Math. Soc. 139, 3039–3043.
Boman, J. [1984]: On the closure of spaces of sums of ridge functions and the range of theX-ray transform, Ann. Inst. Fourier (Grenoble) 34, 207–239.
de Boor, C. [2005]: Divided differences, Surveys in Approximation Theory 1, 46–69.[Online article at] http://www.math.technion.ac.il/sat
Brachat, J., Comon, P., Mourrain, B., Tsigaridas, E. [2010]: Symmetric tensor decomposition, Lin. Alg. Appl. 433, 1851–1872.
Braess, D., Pinkus, A. [1993]: Interpolation by ridge functions, J. Approx. Theory 73,218–236.
Browder, F. E. [1967]: Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Zeitschr. 100, 201–225.
Bruck, R. E., Reich, S. [1977]: Nonexpansive projections and resolvents of accretive op-erators in Banach spaces, Houston J. Math. 3, 459–470.
de Bruijn, N. G. [1951]: Functions whose differences belong to a given class, Nieuw Arc.Wisk. 23, 194–218.
de Bruijn, N. G. [1952]: A difference property for Riemann integrable functions and for some similar classes of functions, Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indaga-tiones Math. 14, 145–151.
Buck, R. C. [1972]: On approximation theory and functional equations, J. Approx. Theory 5, 228–237.
Buhmann, M. D., Pinkus, A. [1999]: Identifying linear combinations of ridge functions, Adv. Appl. Math. 22, 103–118.
Candès, E. J. [1998]: Ridgelets: Theory and Applications, Ph. D. dissertation, Dept. Statis-tics, Stanford University.
Candès, E. J. [1999]: Harmonic analysis of neural networks, Appl. Comput. Harmonic Anal. 6, 197–218.
Candès, E. J., Donoho, D. L. [1999]: Ridgelets: a key to higher-dimensional intermit-tency·, Philos T. Royal Soc. A 357, 2495–2509.
Cheney, E. W. [1966]: Introduction to Approximation Theory, McGraw-Hill, New York.
Chlebowicz, A., Wołowiec-Musial, M. [2005]: Forms with a unique representation as asum of powers of linear forms, Tatra Mt. Math. Publ. 32, 33–39.
Chung, K. C., Yao, T. H. [1977]: On lattices admitting unique Lagrange interpolations,SIAM J. Numer. Anal. 14, 735–743.
Cohen, A., Daubechies, I., DeVore, R. A., Kerkyacharian, G., Picard, D. [2012]: Capturingridge functions in high dimensions from point queries, Constr. Approx. 35, 225–243.
Comon, P., Golub, G., Lim, L.-H., Mourrain, B. [2008]: Symmetric tensors and symmetrictensor rank, SIAM J. Matrix Anal. Appl. 30, 1254–1279.
Courant, R., Hilbert, D. [1962] Methods of Mathematical Physics, Vol. II, Interscience Publishers, New York.
Dahmen, W., Micchelli, C. A. [1987]: Some remarks on ridge functions, Approx. Theoryand its Appl. 3, 139–143.
Deutsch, F. [1979]: The alternating method of Von Neumann, in Multivariate Approximation Theory, ISNM 51, 83–96, eds. W, Schempp, K, Zeller, Birkhäuser, Basel.
Deutsch, F., Hundal, H. [1997]: The rate of convergence for the method of alternatingprojections, II, J. Math. Anal. Appl. 205, 381–405.
Deutsch, F., Hundal, H. [2010]: Slow convergence of sequences of linear operators II:arbitrary slow convergence, J. Approx. Theory 162, 1717–1738.
Diaconis, P., Shahshahani, M. [1984]: On nonlinear functions of linear combinations,SIAM J. Sci. Stat. Comput. Applications 5, 175–191.
Diliberto, S. P., Straus, E. G. [1951]: On the approximation of a function of several variables by the sum of functions of fewer variables, Pacific J. Math. 1, 195–210.
Donoho, D. L., Johnstone, I. M. [1989]: Projection-based approximation and a duality method with kernel methods, Ann. Statist. 17, 58–106.
Dyn, N., Light, W. A., Cheney, E. W. [1989]: Interpolation by piecewise-linear radial basis functions, J. Approx. Theory 59, 202–223.
Edwards, R. E. [1965]: Functional Analysis, Theory and Applications, Holt, Rinehart & Winston, New York.
Ellison, W. J. [1971]: Waring's problem, Amer. Math. Monthly 78, 10–36.
Erdélyi, A. (Ed.) [1953]: Higher Transcendental Functions, Vol. 2, Bateman Manuscript project, McGraw-Hill, New York.
Falconer, K. J. [1979]: Consistency conditions for a finite set of projections of a function, Math. Proc. Camb. Phil. Soc. 85, 61–68.
Fornasier, M., Schnass, K., Vybı́ral, J. [2012]: Learning functions of few arbitrary linear parameters in high dimensions, Found. Comput. Math. 12, 229–262.
Franchetti, C., Light, W. [1986]: On the von Neumann alternating algorithm in Hilbertspace, J. Math. Anal. Appl. 114, 305–314.
Friedman, J. H., Stuetzle, W. [1981]: Projection pursuit regression, J. Amer. Statist. Assoc. 76, 817–823.
Garkavi, A. L., Medvedev, V. A., Khavinson, S. Ya. [1995]: On existence of a best uniform approximation of a function in two variables by the sums φ(x)+ψ(y), Sibirsk. Mat. Zh. 36, 819–827; English translation in Siberian Math. J. 36, 707–713.
Golomb, M. [1959]: Approximation by functions of fewer variables, in On Numerical Approximation, 275–327, ed. R., Langer, University of Wiscons in Press, Madison.
Halperin, I. [1962]: The product of projection operators, Acta Sci. Math. (Szeged) 23, 96–99.
Hamaker, C., Solmon, D. C. [1978]: The angles between the null spaces of X-rays, J. Math. Anal. and Appl. 62, 1–23.
Hamel, G. [1905]: Eine Basis aller Zahlen und die unstetigen Lösungen der Funktional-gleichung f(x+ y) = f(x) + f(y), Math. Ann. 60, 459–462.
Hardy, G. H., Littlewood, J. E., Pólya, G. [1952]: Inequalities, 2nd edn, Cambridge University Press.
Helgason, S. [1980]: The Radon Transform, Progress in Mathematics 5, Birkhäuser.
Hilbert, D. [1909]: Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl nter Potenzen (Waringsches Problem), Math. Ann. 67, 281–300.
Horn, R. A., Johnson, C. R. [1991]: Topics in Matrix Analysis, Cambridge University Press.
Huber, P. J. [1985]: Projection pursuit, Ann. Statist. 13, 435–475.
Iarrobino, A. [1995]: Inverse system of a symbolic power II. The Waring problem for forms, J. Algebra 174, 1091–1110.
Ismailov, V. E. [2007a]: A note on the best L2 approximation by ridge functions, Appl. Math. E–Notes 7, 71–76.
Ismailov, V. E. [2007b]: Characterization of an extremal sum of ridge functions, J. Comput. Appl. Math. 205, 105–115.
Ismailov, V. E. [2008a]: On the representation by linear superpositions, J. Approx. Theory 151, 113–125.
Ismailov, V. E. [2009]: On the proximinality of ridge functions, Sarajevo J. Math. 5, 109–118.
Ismailov, V. E. [2014]: Approximation by ridge functions and neural networks with abounded number of neurons, to appear in Appl. Anal.
Ismailov, V. E., Pinkus, A. [2013]: Interpolation on lines by ridge functions, J. Approx. Theory 175, 91–113.
John, F. [1955]: Plane Waves and Spherical Means Applied to Partial Differential Equations, Interscience Publishers, Inc., New York.
Jones, L. K. [1987]: On a conjecture of Huber concerning the convergence of projection pursuit regression, Ann. Statist. 15, 880–882.
Jones, L. K. [1992]: A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training, Ann. Statist. 20, 608–613.
Kemperman, J. H. B. [1957]: A general functional equation, Trans. Amer. Math. Society, 86, 28–56.
Khavinson, S. Ya. [1997]: Best Approximation by Linear Superpositions (Approximate Nomography), Transl. Math. Monographs, 159, AMS, Providence, RI.
Kroó, A. [1997]: On approximation by ridge functions, Constr. Approx. 13, 447–460.
Kuczma, M. [1968]: Functional Equations in a Single Variable, PWN – Polish Scientific Publishers, Warszawa.
Lang, H. [1984]: On sums of subspaces in topological vector spaces and an application in theoretical tomography, Appl. Anal. 18, 257–265.
Leshno, M., Lin, V. Ya., Pinkus, A., Schocken, S. [1993]: Multilayer feedforward networks with a non-polynomial activation function can approximate any function, Neural Networks 6, 861–867.
Light, W. A., Cheney, E. W. [1985]: Approximation Theory in Tensor Product Spaces,LNM 1169, Springer-Verlag, Berlin.
Light, W. A., Holland, S. M. [1984]: The L1-version of the Diliberto–Straus algorithm inC(T × S), Proc. Edinburgh Math. Soc. 27, 31–45.
Light, W. A., McCabe, J. H., Phillips, G. M., Cheney, E. W. [1982]: The approximation of bivariate functions by sums of univariate ones using the L1-metric, Proc. Edinburgh Math. Soc. 25, 173–181.
Lin, V. Ya., Pinkus, A. [1993]: Fundamentality of ridge functions, J. Approx. Theory 75, 295–311.
Logan, B. F., Shepp, L. A. [1975]: Optimal reconstruction of a function from its projections, Duke Math. J. 42, 645–659.
Maiorov, V. E. [1999]: On best approximation by ridge functions, J. Approx. Theory 99, 68–94.
Maiorov, V. E. [2010a]: Best approximation by ridge functions in Lp-spaces, Ukr. Math. J. 62, 452–466.
Maiorov, V., Meir, R., Ratsaby, J. [1999]: On the approximation of functional classes equipped with a uniform measure using ridge functions, J. Approx. Theory 99, 95–111.
Maiorov, V. E., Oskolkov, K. I., Temlyakov, V. N. [2002]: Gridge approximation and Radon compass, in Approximation Theory, 284–309, ed. B. D., Bojanov, DARBA, Sofia.
Marshall, D. E., O'Farrell, A. G. [1979]: Uniform approximation by real functions, Fund. Math. 104, 203–211.
Medvedev, V. A. [1991]: On the sum of two closed algebras of continuous functions on acompactum, Funk. Anal. i Pril. 27, 33–36; English translation in Func. Anal. Appl. 27,28–30.
Medvedev, V. A. [1992]: Refutation of a theorem of Diliberto and Straus, Mat. Zametki 51, 78–80; English translation in Math. Notes 51, 380–381.
Mordashev, V. M. [1969]: Best approximations of functions of several variables by sums of functions of fewer variables, Mat. Zametki 5, 217–226; English translation in Math.Notes 5, 132–137.
Murata, N. [1996]: An integral representation of functions using three-layered networksand their approximation bounds, Neural Networks 9, 947–956.
Natterer, F. [1986]: The Mathematics of Computerized Tomography, John Wiley & Sons.
von Neumann, J. [1950]: Functional Operators – Vol. II. The Geometry of Orthogonal Spaces, Annals of Math. Studies #22, Princeton University Press, Princeton, NJ. (Thisis a reprint of mimeographed lecture notes first distributed in 1933.)
Oskolkov, K. I. [1997]: Ridge approximation, Fourier–Chebyshev analysis, and optimal quadrature formulas, Tr. Mat. Inst. Steklova 219, Teor. Priblizh. Garmon. Anal., 269–285; English translation in Proc. Steklov Inst. Math. 219, 265–280.
Oskolkov, K. I. [1999a]: Linear and nonlinear methods for ridge approximation, metric theory of functions and related problems in analysis, 165–195, Izd. Nauchno-Issled.Aktuarno-Finans. Tsentra (AFTs), Moscow, (Russian).
Oskolkov, K. I. [2002]: On representations of algebraic polynomials by superpositions of plane waves, Serdica Math. J. 28, 379–390.
Petersen, B. E., Smith, K. T., Solmon D. C. [1979]: Sums of plane waves, and the rangeof the Radon transform, Math. Ann. 243, 153–161.
Petrushev, P. P. [1998]: Approximation by ridge functions and neural networks, SIAMJ. Math. Anal. 30, 155–189.
Pinkus, A. [1999]: Approximation theory of the MLP model in neural networks, Acta Numerica 8, 143–195.
Pinkus, A. [2013]: Smoothness and uniqueness in ridge function representation, Indagationes Mathematicae 24, 725–738.
Pinkus, A. [2015]: The alternating algorithm in a uniformly convex and uniformly smooth Banach space, J. Math. Anal. Appl. 421, 747–753.
Radon, J. [1948]: Zur mechanischen Kubatur, Monatsh. der Math. Physik 52, 286–300.
Reich, S. [1982]: Nonlinear semigroups, accretive operators, and applications, in Nonlinear Phenomena in Mathematical Sciences, 831–838, ed. V., Lakshmikantham, Academic Press, New York.
Reich, S. [1983]: A limit theorem for projections, Linear and Multilinear Alg. 13, 281–290.
Reznick, B. [1992]: Sums of even powers of real linear forms, Memoirs A. M. S. 463.
Rudin, W. [1973]: Functional Analysis, McGraw-Hill Inc., New York.
Schinzel, A. [2002a]: On a decomposition of polynomials in several variables, J. Théor.Nom. Bordeaux 14, 647–666.
Schinzel, A. [2002b]: On a decomposition of polynomials in several variables, II, Colloq. Math. 92, 67–79.
Schwartz, L. [1944]: Sur certaines familles non fondamentales de fonctions continues, Bull. Soc. Math. France 72, 141–145.
Smith, K. T., Solmon, D. C., Wagner, S. I. [1977]: Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull. Amer. Math. Soc. 83,1227–1270.
Stahl, D., de Boor, C. [2011]: On Radons recipe for choosing correct sites for multivariate polynomial interpolation, J. Approx. Theory 163, 1854–1858.
Stein, E. M., Weiss, G. [1971]: Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton.
Stridsberg, E. [1912]: Sur la démonstration de M. Hilbert du théorème de Waring, Math.Ann. 72, 145–152.
Sun, X. [1993]: Ridge function spaces and their interpolation property, J. Math. Anal. Appl. 179, 28–40.
Svensson, L. [1989]: Functional analytic approach to stability problems in three-dimensional theoretical tomography, J. Math. Anal. Appl. 139, 303–310.
Sylvester, J. J. [1886]: Sur une extension d'un théorème de Clebsch relatif aux courbes duquatrième degré, C. R. Math. Acad. Sci. Paris 102, 1532–1534.
Temlyakov, V. N. [2000]: Weak greedy algorithms, Adv. Comput. Math 12, 213–227.
Temlyakov, V. N. [2011]: Greedy Approximation, Cambridge Monographs on Applied and Computational Math., Vol. 20, Cambridge University Press.
Tyagi, H., Cevher, V. [2014]: Learning non-parametric basis independent models frompoint queries via low-rank methods, Appl. Comput. Harmonic Anal. 37, 389–412.
Usevich, K. [2014]: Decomposing multivariate polynomials with structured low-rank matrix completion, in 21st International Symposium on Mathematical Theory of Networks and Systems, July 7–11, 2014, Groningen, The Netherlands, 1826–1833.
Vostrecov, B. A. [1963]: Conditions for a function of many variables to be representableas a sum of a finite number of plane waves traveling in given directions, Dokl. Akad.Nauk SSSR 153, 16–19; English translation in Soviet Math. Dokl. 4, 1588–1591.
Vostrecov, B. A., Ignat'eva, A. V. [1967]: The existence of best approximation of functions by sums of a finite number of plane waves of given directions in the Lp metric, Dokl.Akad. Nauk SSSR 176, 1225–1228; English translation in Soviet Math. Dokl. 8, 1288–1291.
Vostrecov, B. A., Kreines, M. A. [1961]: Approximation of continuous functions by superpositions of plane waves, Dokl. Akad. Nauk SSSR 140, 1237–1240; English translationin Soviet Math. Dokl. 2, 1326–1329.
Vostrecov, B. A., Kreines, M. A. [1962]: Approximation of a plane wave by superpositionsof plane waves of given directions, Dokl. Akad. Nauk SSSR 144, 1212–1214; Englishtranslation in Soviet Math. Dokl. 3, 875–877.
Weinmann, A. [1994]: The interpolation problem for ridge functions, Numer. Funct.Anal. Optim. 15, 183–186.
Babayev, M.-B. A. [2004]: On estimation of the best approximation by ridge polynomials, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 20, 3–8.
Babayev, M.-B. A., Novruzova, N. A. [2003]: On de la Valle-Poussin type theorem, Proc.Inst. Math. Mech. Natl. Acad. Sci. Azerb. 19, 45–48.
Babenko, V. F., Levchenko, D. A. [2013]: Uniformly distributed ridge approximation of some classes of harmonic functions, Ukrainian Math. J. 64, 1621–1626.
Candès, E. J. [2002]: New ties between computational harmonic analysis and approximation theory, in Approximation Theory, X (St. Louis, MO, 2001), 87–153, eds.C. K., Chui, L. L., Schumaker, J., Stöckler, Innov. Appl. Math., Vanderbilt University Press, Nashville, TN.
Candès, E. J. [2003]: Ridgelets: estimating with ridge functions, Ann. Statist. 31, 1561–1599.
Cheney, E. W. [1992]: Approximation by functions of nonclassical form, in Approximation Theory, Spline Functions and Applications (Maratea, 1991), 1–18, ed. S. P.|Singh, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 356, Kluwer Academic Publishers, Dordrecht.
Cheney, E. W., Xu, Y. [1993]: A set of research problems in approximation theory, in Topics in Polynomials of One and Several Variables and their Applications, 109–123,eds. Th. M., Rassias, H. M., Srivastava, A., Yanushauskas, World Scientific Publishing.
Chui, C. K., Li, X. [1992]: Approximation by ridge functions and neural networks withone hidden layer, J. Approx. Theory 70, 131–141.
Davison, M. E., Grunbaum, F. A. [1981]: Tomographic reconstruction with arbitrary directions, Comm. Pure and Applied Math. 34, 77–120.
DeVore, R. A., Oskolkov, K. I., Petrushev, P. P. [1997]: Approximation by feed-forwardneural networks, The heritage of P. L. Chebyshev: a Festschrift in honor of the 70th birthday of T. J. Rivlin, in Ann. Numer. Math. 4, 261–287.
Donoho, D. L. [2001]: Ridge functions and orthonormal ridgelets, J. Approx. Theory 111,143–179.
Garkavi, A. L. [1996]: On the problem of best approximation of a function f(x, y) by sums φ(ax + by) + ψ(cx + dy) (on a question of S. B. Stechkin), Proceedings of the XX Workshop on Function Theory (Moscow, 1995) in East J. Approx. 2, 151–154.
Garkavi, A. L., Medvedev, V. A., Khavinson, S. Ya. [1996]: Existence of the best possible uniform approximation of a function of several variables by a sum of functions of fewer variables, Mat. Sb. 187, 3–14; English translation in Sb. Math. 187, 623–634.
Gordon, Y., Maiorov, V., Meyer, M., Reisner, S. [2002]: On the best approximation byridge functions in the uniform norm, Constr. Approx. 18, 61–85.
Hemmat, A. A., Dehghan, M. A., Skopina, M. [2005]: Ridge wavelets on the ball, J. Approx. Theory 136, 129–139.
Ismailov, V. E. [2006]: On the approximation by linear combinations of ridge functions inL2 metric, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 24, 101–108.
Ismailov, V. E. [2007c]: Representation of multivariate functions by sums of ridge functions, J. Math. Anal. Appl. 331, 184–190.
Ismailov, V. E. [2008b]: On the approximation by weighted ridge functions, An. Univ. Vest Timis,. Ser. Mat.-Inform. 46, 75–83.
Ismailov, V. E. [2011]: Approximation capabilities of neural networks with weights from two directions, Azerb. J. Math. 1, 122–128.
Ismailov, V. E. [2013]: A review of some results on ridge function approximation, Azerb. J. Math. 3, 3–51.
Jones, L. K. [2009]: Local minimax learning of functions with best finite sample estimation error bounds: applications to ridge and lasso regression, boosting, tree learning, kernel machines, and inverse problems, IEEE Trans. Inform. Theory 55, 5700–5727.
Kazantsev, I. G. [1998]: Tomographic reconstruction from arbitrary directions using ridge functions, Inverse Problems 14, 635–645.
Kolleck, A., Vybı́ral, J. [2015]: On some aspects of approximation of ridge functions, J. Approx. Theory 194, 35–61.
Konovalov, V. N., Kopotun, K. A., Maiorov, V. E. [2010]: Convex polynomial and ridge approximation of Lipschitz functions in Rd, Rocky Mountain J. Math. 40, 957–976.
Konovalov, V. N., Leviatan, D., Maiorov, V. E. [2008]: Approximation by polynomials and ridge functions of classes of s-monotone radial functions, J. Approx. Theory 152, 20–51.
Konovalov, V. N., Leviatan, D., Maiorov, V. E. [2009]: Approximation of Sobolev classesby polynomials and ridge functions, J. Approx. Theory 159, 97–108.
Kozarev, R. [2004]: The greedy ridge algorithm in Gaussian weighted L2, East J. Approx. 10 (2004), 419–440.
Levesley, J., Sun, X. [1995]: Scattered Hermite interpolation by ridge functions, Numer. Funct. Anal. Optim. 16, 989–1001.
Li, W., Padula, S. [2005]: Approximation methods for conceptual design of complexsystems, in Approximation Theory XI: Gatlinburg 2004, 241–278, eds. C. K., Chui, M., Neamtu, L. L., Schumaker, Modern Methods Math., Nashboro Press, Brentwood.
Light, W. [1993]: Ridge functions, sigmoidal functions and neural networks, in Approximation Theory VII (Austin, TX, 1992), 163–206, eds. E. W., Cheney, C. K., Chui, L. L., Schumaker, Academic Press, Boston.
Lin, V. Ya., Pinkus, A. [1994]: Approximation of multivariate functions, in Advances in Computational Mathematics, 257–266, eds. H. P., Dikshit, C. A., Micchelli, World Scientific Publishing.
Madych, W. R., Nelson, S. A. [1985]: Radial sums of ridge functions: a characterization, Math. Methods Appl. Sci. 7, 90–100.
Maiorov, V. [2010b]: Geometric properties of the ridge function manifold, Adv. Comput. Math. 32, 239–253.
Maiorov, V., Pinkus, A. [1999]: Lower bounds for approximation by MLP neural networks, Neurocomputing 25, 81–91.
Marshall, D. E., O'Farrell, A. G. [1983]: Approximation by a sum of two algebras. The lightning bolt principle, J. Funct. Anal. 52, 353–368.
Mayer, S., Ullrich, T., Vybı́ral, J. [2014]: Entropy and sampling numbers of classes of ridge functions, arXiv:1311.2005.
Oskolkov, K. I. [1999b]: Approximation by ridge functions and the Nikol'skii-Kolmogorovproblem, Dokl. Akad. Nauk 368, 445–448; English translation in Dokl. Math. 60, 209–212.
Park, M. G., Sun, J. [1998]: Tests in projection pursuit regression, J. Statist. Plann. Inference 75, 65–90.
Pelletier, B. [2004]: Approximation by ridge function fields over compact sets, J. Approx. Theory 129, 230–239.
Pinkus, A. [1995]: Some density problems in multivariate approximation, in Approximation Theory: Proceedings of the International Dortmund Meeting IDOMAT 95, 277–284, eds. M. W., Muller, M., Felten, D. H., Mache, Akademie Verlag.
Pinkus, A. [1997]: Approximating by ridge functions, in Surface Fitting and Multiresolution Methods, 279–292, eds. A., Le Mehaute, C., Rabut, L. L., Schumaker, Vanderbilt University Press, Nashville.
Reid, L., Sun, X. [1993]: Distance matrices and ridge function interpolation, Canad. J. Math. 45, 1313–1323.
Sanguineti, M. [2008]: Universal approximation by ridge computational models and neural networks: a survey, Open Appl. Math. J. 2, 31–58.
Sproston, J. P., Strauss, D. [1992]: Sums of subalgebras of C(X), J. London Math. Soc. 45, 265–278.
Sternfeld, Y. [1978]: Uniformly separating families of functions, Israel J. Math. 29, 61–91.
Sun, X., Cheney, E. W. [1992]: The fundamentality of sets of ridge functions, Aequationes Math. 44, 226–235.
Wang, Z., Qin, X., Wei G., Su, L., Wang, L. H., Fang, B. Y. [2010]: Meshless method withridge basis functions, Applied Math. Comp. 217, 1870–1886.
Wu, W., Feng, G., Li, X. [2002]: Training multilayer perceptrons via minimization of sum of ridge functions, Adv. Comput. Math. 17, 331–347.
Xu, Y., Light, W. A., Cheney, E. W. [1993]: Constructive methods of approximation by ridge functions and radial functions, Numer. Algorithms 4, 205–223.
Zhang, L. W. [2005]: Error estimates for interpolation with ridge basis functions, (Chinese) J. Fudan Univ. Nat. Sci. 44, 301–306.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.