Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T18:52:25.900Z Has data issue: false hasContentIssue false

11 - Interpolation at Points

Published online by Cambridge University Press:  05 August 2015

Allan Pinkus
Affiliation:
Technion - Israel Institute of Technology, Haifa
Get access

Summary

In this chapter we consider the following questions. Can we characterize those pointsx1, …, xk ∊ Rn(any finite k) such that for every choice of data b1, …, bk (bj ∊ R, j = 1, …, k), there exists a function GM(A1, …, Ar) satisfying

G(xj) = bj, j = 1, …, k?

That is, for given fixed d × n matrices A1, …, Ar, do there exist functions f1, …, fr : Rd → R for which

For r = 1 this problem has a simple solution. Given a d × n matrix A, we want to know conditions on the points in Rn such that for every choice of b1, …, bk there exists a function f : Rd → R (depending on the xj and bj) such that

f(Axj) = bj, j = 1, …, k.

Obviously such a function exists if and only if

AxsAxt

for all st, s, t ∊ {1, …, k}. And, in general, if for some i ∊ {1, …, r}, the values Aixj, j = 1, …, k, are all distinct, then it easily follows that we can interpolate as desired, independent of and without using the other Al, li. The problem becomes more interesting and more difficult when, for each i, the k values Aixj, j = 1, …, k, are not all distinct.

In Section 11.1 we state some general, elementary results concerning interpolation at points. In Section 11.2 we detail necessary and sufficient conditions for when we can interpolate in the case of two directions, i.e., r = 2. In Section 11.3 we consider the case of r ≥ 3 directions, but only in R2, and present an exact geometric characterization for a large (but not the complete) set of points where interpolation is not always possible.

Type
Chapter
Information
Ridge Functions , pp. 152 - 167
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Interpolation at Points
  • Allan Pinkus, Technion - Israel Institute of Technology, Haifa
  • Book: Ridge Functions
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316408124.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Interpolation at Points
  • Allan Pinkus, Technion - Israel Institute of Technology, Haifa
  • Book: Ridge Functions
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316408124.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Interpolation at Points
  • Allan Pinkus, Technion - Israel Institute of Technology, Haifa
  • Book: Ridge Functions
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316408124.013
Available formats
×