Book contents
- Frontmatter
- Contents
- List of Contributors
- Preface
- Acknowledgements
- 1 The Physical Grounds of Radiative Transfer
- 2 Fundamental Physical Aspects of Radiative Transfer
- 3 Numerical Methods in Radiative Transfer
- 4 Stellar Atmosphere Codes
- 5 Radiative Transfer in the (Expanding) Atmospheres of Early-Type Stars, and Related Problems
- 6 Phenomenology and Physics of Late-Type Stars
- 7 Modelling the Atmospheres of Ultracool Dwarfs and Extrasolar Planets
6 - Phenomenology and Physics of Late-Type Stars
Published online by Cambridge University Press: 24 December 2019
- Frontmatter
- Contents
- List of Contributors
- Preface
- Acknowledgements
- 1 The Physical Grounds of Radiative Transfer
- 2 Fundamental Physical Aspects of Radiative Transfer
- 3 Numerical Methods in Radiative Transfer
- 4 Stellar Atmosphere Codes
- 5 Radiative Transfer in the (Expanding) Atmospheres of Early-Type Stars, and Related Problems
- 6 Phenomenology and Physics of Late-Type Stars
- 7 Modelling the Atmospheres of Ultracool Dwarfs and Extrasolar Planets
Summary
In this chapter, we present the basics of the physics and phenomenology of FGKM-type stars. This review is based on recent developments in the observational and theoretical domains of stellar physics, including a variety of techniques – spectroscopy, interferometry, photometry and large-scale stellar surveys. We focus on the advances in radiative transfer modelling and spectroscopy of stars across the full metallicity range. To provide the reader with the essential supplementary information, we also give a brief qualitative account of the structure and evolution of low- and intermediate-mass stars and of stellar nucleosynthesis. We also provide a brief overview of new models of stellar atmospheres and stellar spectra, with emphasis on non-LTE and hydrodynamics. Lastly, we discuss some of the relevant observational studies of stellar abundances in the context of stellar populations, evolution of metal-poor stars and Galactic archeology.
- Type
- Chapter
- Information
- Radiative Transfer in Stellar and Planetary Atmospheres , pp. 191 - 222Publisher: Cambridge University PressPrint publication year: 2020