Published online by Cambridge University Press: 05 August 2014
Synopsis: Indirection theory gives a clean interface to higher-order step indexing. Many different semantic features of programming languages can be modeled in indirection theory. The models of indirection theory use dependent types to stratify quasirecursive predicates, thus avoiding paradoxes of self-reference. Lambda calculus with mutable references serves as a case study to illustrate the use of indirection theory models.
When defining both Indirection and Separation one must take extra care to ensure that aging commutes over separation. We demonstrate how to build an axiomatic semantics with using higher-order separation logic, for the pointer/continuation language introduced in the case study of Part II.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.