Published online by Cambridge University Press: 05 August 2014
Synopsis: Separation logic is a formal system for static reasoning about pointer-manipulating programs. Like Hoare logic, it uses assertions that serve as preconditions and postconditions of commands and functions. Unlike Hoare logic, its assertions model anti-aliasing via the disjointness of memory heaplets. Separation algebras serve as models of separation logic. We can define a calculus of different kinds of separation algebras, and operators on separation algebras. Permission shares allow reasoning about shared ownership of memory and other resources. In a first-order separation logic we can have predicates to describe the contents of memory, anti-aliasing of pointers, and simple (covariant) forms of recursive predicates. A simple case study of straight-line programs serves to illustrate the application of separation logic.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.